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CHAPTER 1

Introduction

This document presents a detailed description of the digital signature scheme SQIsign, whose security is based
on the presumed hardness of finding isogenies between supersingular elliptic curves. The scheme is based on the
original construction of [DKL+20], and includes several subsequent improvements. SQIsign is conjectured to be
secure against quantum computer attacks.

The present specifications of SQIsign start in Chapter 2 and Chapter 3 with an overview of the different math-
ematical objects used in SQIsign, and a precise description of the algorithms to manipulate them. Then, Chapter 4
details the components of SQIsign itself (key generation, signing, and verification). The following chapters discuss
the choice of parameters (Chapter 5), known answer tests (KATs) (Chapter 6), performance (Chapter 7), imple-
mentation details (Chapter 8), heuristics and failure cases (Chapter 9), and security (Chapter 10).

1.1. Advantages and limitations
A unique performance profile. The performance profile of SQIsign differs greatly from other signature candi-
dates.

⊕ Very compact keys and signatures. SQIsign offers both very compact public keys and signatures (see
Table 1). To our knowledge, SQIsign has the smallest combined size of public key and signature of any
post-quantum signature scheme. In particular, they are about 7× smaller than Falcon (to be standarized
as FN-DSA), and 16-17× smaller than ML-DSA.

⊙ Reasonable efficiency. While significantly slower than ML-DSA and Falcon, SQIsign has a reasonable
efficiency that, arguably, makes it practical for most real-world applications. For example, our 64-bit
Intel implementation at NIST security level I has a runtime of about 30 ms for signing and 1.5 ms for
verification on an Intel Core i7-13700K (Raptor Lake) x86-64, 3.4 GHz CPU (see Table 2 and Chapter 7).
Considerable improvements from earlier versions of SQIsign now place it in the same ballpark as many
other post-quantum signature candidates.

⊖ A complex signing procedure. The main drawback of SQIsign is the intricacy of the signing procedure,
in terms of mathematical sophistication and diversity of objects being manipulated. This renders the sig-
nature difficult to implement, especially for resilience to side-channel attacks.1 Note that the verification
procedure is simpler and significantly faster (see Table 5).

A security assumption from number theory. The security of SQIsign relies on the hardness of a computational
problem from number theory: computing the endomorphism ring of a supersingular elliptic curve, the endomor-
phism ring problem.2 This problem has several advantages.

⊕ Confident tuning of security parameters. The complexity of the fastest known attacks against SQIsign
(i.e., solving the endomorphism ring problem) is well understood. It allows for straightforward, precise
estimation of concrete attack costs, hence confident tuning of security parameters. The complexity of the
best algorithms for this problem has been very stable.

⊕ Provable security. The scheme is proven EUF-CMA secure assuming the hardness of a version with
hints of the endomorphism ring problem.

1This is best reflected in the fact that the implementations provided in this submission do not run in constant-time. Nevertheless, as a first
step in the right direction, a significant portion of the underlying algorithms for the finite-field, elliptic-curve, pairing, and isogeny arithmetic
have been implemented in constant-time.

2Note that the endomorphism ring problem, hence the security of SQIsign, is not affected by the polynomial-time attacks [CD23;
MMP+23; Rob23] against the SIDH [JD11] key exchange. While SIDH also belonged to the “isogeny-based” family, it relied on an easier
variant of the fundamental isogeny problems.

4



1.2. HIGH LEVEL DESCRIPTION OF SQIsign 5

Table 1. SQIsign key and signature sizes in bytes for each security level.

Parameter set Public key Secret key Signature

NIST-I 65 353 148

NIST-III 97 529 224

NIST-V 129 701 292

Table 2. SQIsign performance in 106 CPU cycles for the optimized 64-bit Intel implementation
on an Intel Core i7-13700K. Results are the median of 1,000 benchmark runs.

Parameter set Key Gen. Signing Verification

NIST-I 43.3 101.6 5.1

NIST-III 134.0 309.2 18.6

NIST-V 212.0 507.5 35.7

⊕ Random instances are as hard as the worst case. The endomorphism ring problem enjoys a simple
worst-case to average-case self-reduction for the uniform distribution. SQIsign public keys are at small
statistical distance to the uniform distribution, hence the security of the scheme is supported by the worst-
case endomorphism ring problem.

⊕ Improving the diversity of security assumptions. SQIsign differs greatly from all other signature can-
didates. The endomorphism ring problem is of a very different nature from the lattice-based assumptions
underlying ML-DSA and Falcon, and from all other signature candidates.

⊖ A relatively new assumption. On the other hand, the main drawback of this assumption is its relative
novelty. Arithmeticians started studying the endomorphism ring problem in 1996 [Koh96], but it has
only recently received the spotlight of cryptography.

1.2. High level description of SQIsign
SQIsign is designed as a proof of knowledge (a sigma protocol), turned into a signature by the Fiat-Shamir trans-
form. The sigma (Σ) protocol proves knowledge of an elliptic curve endomorphism.

We consider a collection of objects called elliptic curves. Two elliptic curves may be connected by maps called
isogenies. We write φ : E1 → E2 for an isogeny φ connecting an elliptic curve E1 to an elliptic curve E2. The
foundational problem of isogeny-based cryptography is essentially the following isogeny path problem: given two
elliptic curves E1 and E2, find an isogeny E1 → E2.

Now, given an elliptic curve E, an endomorphism of E is an isogeny φ : E → E. The collection of all
endomorphisms of E is called the endomorphism ring of E, written End(E). The endomorphism ring problem is
the following: givenE, compute End(E). For so-called supersingular elliptic curves, this problem is known to be
equivalent to the isogeny path problem under polynomial time reductions [EHL+18; Wes22]. In fact, we have that

• given E1, E2, End(E1) and End(E2), one can find an isogeny E1 → E2 in polynomial time, and
• given E1, E2, End(E1), and an isogeny E1 → E2, one can compute End(E2) in polynomial time.

The sigma protocol now works as follows. The prover has as public key an elliptic curve Epk, and their secret
is the associated endomorphism ring End(Epk). With Epk public, the goal of the prover is to convince the verifier
that they know End(Epk). They proceed as follows.

(1) For the commitment phase, the prover generates a random pair (Ecom,End(Ecom)), and sends Ecom to
the verifier.

(2) For the challenge phase, the verifier generates a random isogeny φchl from Epk to some other curve Echl,
and sends it to the prover.

(3) Given End(Epk) and φchl : Epk → Echl, the prover can compute End(Echl). Now, knowing End(Ecom)
and the freshly computed End(Echl), the prover can compute an isogeny φrsp : Ecom → Echl, and send
it to the verifier.

(4) The verifier checks that φrsp is indeed an isogeny from the commitment curveEcom to the challenge curve
Echl.
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The idea is that to compute the response, the prover must use their knowledge ofEnd(Epk). Intuitively, the protocol
asks for the prover to compute isogenies fromEcom to a somewhat random curveEchl, and that relates to knowledge
of End(Epk) thanks to the computational equivalence between the isogeny path problem and the endomorphism
ring problem. However, this idea does not immediately work, and the protocol, as sketched above, is insecure: a
cheating prover could generate the commitment Ecom by choosing a random isogeny φcheat

com : Epk → Ecom. They
may not be able to compute End(Ecom), but it does not matter. In response to φchl : Epk → Echl, they would
simply respond with φcheat

rsp = φchl ◦ φ̂cheat
com : Ecom → Echl (where φ̂cheat

com : Ecom → Epk is the dual of φcheat
com ).

There is a simple fix to this issue, by ensuring that φchl is not a “sub-isogeny” of φrsp. With this fix, one can
actually prove that this protocol proves knowledge of at least some non-trivial part of End(Epk). It is known that
computing a non-trivial part of End(Epk) is as hard as computing the full End(Epk) [PW24].

The SQIsign protocol described in detail in Chapter 4 follows the above outline. There is a notable cosmetic
difference: we fix a public reference pair (E0,End(E0)), and instead of thinking of the keys as a random pair
(Epk,End(Epk)), we think of them as a random isogeny φsk : E0 → Epk. Similarly, we generate the commitment
via a random isogeny φcom : E0 → Ecom instead of a random pair (Ecom,End(Ecom)). Both approaches are
computationally equivalent, but in order to generate a random pair (E,End(E)), one would typically start by
computing a random isogeny E0 → E.

1.3. Differences with the round-1 SQIsign submission
The main difference between the round-1 SQIsign submission and the present round-2 SQIsign submission is the
implementation of the improvements described in [BDD+24]. The structure of the scheme, as described in Sec-
tion 1.2, remains unchanged. The differences amount to the following four points:

(1) Uniform keys. The key generation procedure now selects a uniformly random supersingular elliptic
curve. This improves the theoretical security guarantee, because the underlying computational problem
(the endomorphism ring problem) benefits from a worst-case to average-case self-reduction for the uni-
form distribution: key recovery is now provably as hard as the hardest instance of the endomorphism ring
problem.

(2) Response sampled from a well-understood distribution. The response phase, as described in Sec-
tion 1.2, requires sampling a “response isogeny” φrsp : Ecom → Echl from a collection of possible
responses. In the previous version of SQIsign, this response was sampled in an ad hoc manner, which
was hard to analyze (a concern for the zero-knowledge property of the scheme), and forced the degree
of φrsp to be very large (causing the scheme to be slow). The response is now sampled from a natu-
ral, well-understood distribution: the uniform distribution on the finite set of isogenies Ecom → Echl of
bounded degree. This improves the theoretical security guarantee by removing ad hoc assumptions from
the zero-knowledge property.

(3) Response represented by interpolation data. The response isogeny is now represented by interpolation
data: the images of a few points through the isogeny. The previous version of SQIsign used another
representation (the isogeny path representation) which only works for special isogenies. The interpolation
method allows one to represent any isogeny. This allows one to represent isogenies sampled from the
aforementioned uniform distribution. Combined with the aforementioned improvement on the degree
of φrsp, this method results in a significant speedup of SQIsign. This interpolation method requires the
computation of isogenies between abelian surfaces (a two-dimensional analog of elliptic curves).

(4) Much better performance, in all metrics. As a result of the changes outlined above, together with an
improved implementation, the round-2 version of SQIsign drastically outperforms the round-1 version:
for security level I, the optimized implementation of signing is now nearly 20× faster, at 103.0 Mcycles,
and verification is more than 6× faster, at 5.1 Mcycles. At higher security levels, the improvements are
even larger. Beyond the running time improvements, signatures in the round-2 version are also smaller,
by about 14%.

Concretely, the material on the KLPT algorithm has been removed (Section 2.5.2. The KLPT algorithm and
generalizations in the previous version), and material on the computation of isogenies in dimension 2 has been
added (Section 2.4 and Section 8.5). Modifications throughout the document reflect this new approach.
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1.4. Notation
Assignment of a certain value α to a variable x is denoted by x ← α. Algorithms are typeset in sans serif font,
e.g., IdealToIsogeny. We use O for big-O notation, and f = Θ(g) whenever f is bounded from below and from
above by g asymptotically. We denote composition of functions using ◦, e.g., (f ◦ g)(x) = f(g(x)).

We denote matrices with bold capital letters, e.g., M,A, and vectors with bold small letters, e.g., v,x. We
denote the transpose of a matrix M by Mt. Elliptic curves and abelian surfaces are usually denoted with capital
letters, e.g., E, E′, A, and their points similarly, e.g., P , Q.

We denote by M · P the application of a matrix M to a point P on an elliptic curve or abelian surface (in any
coordinate system). Here, we view P as a column vector, and multiplication · is performed as the usual matrix-
vector multiplication.

Isogenies between elliptic curves are denoted with Greek letters, e.g., φ,ψ, τ ; endomorphisms often use θ,
and higher-dimensional isogenies use capital Greek letters, e.g., Φ, Ψ. Quaternions are usually denoted with Greek
letters too, e.g., α, β, whereas quaternion ideals are denoted by capital Roman letters, e.g., I , J . The generators of
the quaternion algebra are denoted by i, j, k. More specific notation used in this document is shown in Table 3.

There is an unfortunate clash with the usual indices i, j, k used for enumeration in for loops and the generators
of the quaternion algebra. We use the following convention: for algorithms that do not involve quaternion algebras,
the symbols i, j, k lose their usual definition as generators and should be viewed simply as indices. Otherwise, we
use different (less standard) indices. In IdealGenerator, enumeration indices a, b, c, d are used, which clashes with
the notation used for theta null points in Section 8.5. Here, the same convention applies.

1.4.1. Exception handling

For clarity of exposition, throughout this specification, we use exceptions for error handling. We use the following
convention.

1: try
2: Do something that might go wrong.
3: if Something is actually wrong then
4: raise Exception("Description of the error") // Exit the try environment and go to the except environment
5: except
6: Try to recover or show the user an error message.

Additionally, we use the continue statement to skip the remaining set of instructions inside a loop.
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Table 3. Notation and parameters of the SQIsign scheme.

Scheme Parameters
λ Security parameter, one of 128, 192 or 256.
p Size of the base field, a prime of the form c · 2f − 1.
f The 2-valuation of p+ 1, roughly 2λ.

Elementary Objects
Z /dZ Ring of integers modulo d for some integer d.
Fp Finite fields with p elements.
Fq Finite fields with q = pk elements.
Fp2 Finite fields with p2 elements.
Fp Algebraic closure of Fp.

GLn(q) Group of invertible matrices of size n and elements in Fq .

Elliptic Curve Objects
E An elliptic curve over some field Fq .

E × E′ A product of two elliptic curves E and E′.
A An abelian variety over some field Fq .

Jac(C) The Jacobian of a hyperelliptic curve C.
EA,B An elliptic curve in Montgomery form with parameters A,B ∈ Fq .
0E The point at infinity of an elliptic curve or abelian variety E.

E(Fq) The points on E with coordinates in Fq .
E[n] The n-torsion on E.
hinti Hints to generate a basis for E[2f ].
j(E) The j-invariant of the elliptic curve E.

xP and yP The x- resp. y-coordinate of a point P ∈ E.
φ : E → E′ An isogeny between elliptic curves.
Φ : A→ A′ A higher-dimensional isogeny.
End(E) The endomorphism ring of an elliptic curve E.

Quaternion Objects
Bp,∞ A quaternion algebra, ramified at p and∞.
B⋆

p,∞ The space of linear functions Bp,∞ → Q.
O An order in Bp,∞.

OL(I), OR(I) The left, resp. right, order of an ideal I ⊂ O.
tr(α) The trace of an element α ∈ Bp,∞.
nrd(α) The norm of an element α ∈ Bp,∞.
nrd(I) The norm of an ideal I ⊂ O.
[I]∗ The pullback by an ideal I .
[I]∗ The pushforward by an ideal I .

Protocol Objects
pk The public key, containing a curve Epk and basis hints hintpk.
sk The secret key, containing the curve Epk and hintpk, the secret ideal Isk

and a change-of-basis matrix Msk.
msg The message to be signed.
HASH A hash function, obtained by repeated application of SHAKE256.
com Commitment, containing a description of the curve Ecom.
chl Challenge, an integer between 0 and 2echl generated by hashing the public

key pk, Ecom and the message msg.
resp Response, containing a description of an isogeny Ecom → Echl.
Eaux The auxiliary curve required for the higher-dimensional response

isogeny.
nbt The number of backtracking steps in the computation of the response

isogeny.
rrsp The dyadic valuation of degφrsp.
σ Signature, containing Eaux together with nbt, rrsp, the change-of-basis

matrix Mchl, the challenge chl, hintaux and hintchl.
Dmix Degree of the secret isogeny and commitment isogeny, chosen as the

smallest prime larger than 24λ.
Drsp Degree of the response isogeny; concretely Drsp = 2ersp where ersp =⌈

log2
(√

p
)⌉

.
Dchl Degree of the challenge isogeny, defined as Dchl = 2f .
echl Size of the challenge space, given by echl = f − ersp.



CHAPTER 2

Basics of Isogenies

SQIsign is based on a mathematical correspondence between two seemingly distant mathematical worlds:
supersingular elliptic curves and isogenies defined over finite fields on one side, maximal orders and ideals of
quaternion algebras on the other side. A complete implementation of SQIsign must be capable of representing
all these objects and manipulating them. This chapter describes the first world, which requires working finite
fields (Section 2.1), elliptic curves (Section 2.2) and isogenies, both one-dimensional (Section 2.3) and higher-
dimensional (Section 2.4). This is as much as is needed for verification. The world of quaternions is described in
Chapter 3, and specifically how these two worlds connect in Section 3.2.

2.1. Finite fields
We follow the presentation in [JAC+20]. A finite field is a finite set of elements equipped with an addition and
multiplication operation. In particular, addition and multiplication are closed, there exist additive resp. multiplica-
tive neutral elements 0 resp. 1, and additive resp. multiplicative inverses of each element, with the exclusion of the
only non-multiplicatively-invertible element 0.

Finite fields of cardinality q exist if and only if q is a prime power, i.e., q = pr for some prime number p
and positive integer r. Such finite fields of cardinality q have a unique representation up to isomorphism, and
are denoted by Fq . For q = pr, we call char(Fq) = p the characteristic of Fq . SQIsign uses fields of special
characteristic p, satisfying p ≡ 3 (mod 4) as detailed in Chapter 5.

2.1.1. The finite field Fp

We uniquely represent the elements of the finite field Fp by the integers {0, . . . , p− 1}. The algebraic operations
are defined as follows:

Addition: For a, b ∈ Fp, the sum c = a+ b is given by the unique integer c ∈ {0, . . . , p− 1} that satisfies
c ≡ a+ b (mod p).

Additive inverse: For a ∈ Fp, its additive inverse−a is given by the unique integer (−a) ∈ {0, . . . , p−1}
satisfying a+ (−a) ≡ 0 (mod p).

Multiplication: For a, b ∈ Fp, the product c = a · b is given by the unique integer c ∈ {0, . . . , p− 1} that
satisfies c ≡ a · b (mod p).

Multiplicative inverse: For a ∈ Fp, a ̸= 0, its multiplicative inverse a−1 is given by the unique integer
a−1 ∈ {0, . . . , p− 1} satisfying a · a−1 ≡ 1 (mod p).

Quadratic residuosity: Let a ∈ Fp, decide whether a is a square, i.e., whether there is an element b ∈ Fp
with b2 = a. This is done by computing the Legendre symbol a

p−1
2 , which equals 1 if a is a square, −1

otherwise.
Square root: Let a ∈ Fp be a square in Fp. Since we restrict to primes satisfying p ≡ 3 (mod 4), we

compute the canonical square root of a as

√
a = a

p+1
4 (mod p). (1)

Additionally, we define an ordering on elements of Fp by lifting them to the interval [0, p− 1] and comparing
integers.

9
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2.1.2. The finite field Fp2

Since we will only use finite fields of characteristic p ≡ 3 (mod 4), we can define the field extension Fp2 as
Fp2 = Fp(i) with i2 +1 = 0. We uniquely represent the elements of Fp2 as a = a0 + a1 · i with a0, a1 ∈ Fp. The
algebraic operations are defined as follows:

Addition: For a, b ∈ Fp2 , their sum is given by c = c0 + c1 · i with c0 = a0 + b0 and c1 = a1 + b1, using
additions in Fp.

Additive inverse: For a ∈ Fp2 , its additive inverse −a is given by−a = (−a0) + (−a1) · i, using additive
inversions in Fp.

Multiplication: For a, b ∈ Fp2 , their product is given by c = c0 + c1 · i with c0 = a0b0 − a1b1 and
c1 = a0b1 + a1b0, using additions, additive inversions, and multiplications in Fp.

Multiplicative inverse: For a ∈ Fp2 , a ̸= 0, its multiplicative inverse is given by a−1 = (a0N
−1) +

(−a1N−1) · i, where N = a20 + a21 ∈ Fp, using additions, additive inversions, multiplications and
multiplicative inversions in Fp.

Quadratic residuosity: Let a ∈ Fp2 , decide whether a is a square. This is the case if and only if ap+1 =
a20 + a21 ∈ Fp is a square in Fp.

Square root: Let a ∈ Fp. If a is a square in Fp, we define its square root as in Eq. (1); otherwise −a is a
square in Fp and we define

√
a =
√
−a·i. Finally, let a ∈ Fp2 \Fp be a square in Fp2 . We use [AAA+25]

to define a canonical square root of a = a0 + a1 · i as

√
a = (−i)

1−χ
2 S · (a+ δ), where δ =

√
a20 + a21, S = [2(a0 + δ)]

p−3
4 and χ = [2(a0 + δ)]

p−1
2 . (2)

Algorithm 8.2 gives a way to efficiently compute this square root.
Additionally, we define a lexicographic ordering on elements of Fp2 by

a0 + a1 · i < b0 + b1 · i iff a0 < b0 or (a0 = b0 and a1 < b1). (3)

2.2. Elliptic curves
In the following, we assume that Fq is a finite field with char(Fq) > 2. We recall here some key facts on supersin-
gular elliptic curves in Montgomery form necessary to the implementation of SQIsign. For an extensive review of
Montgomery curves and their properties, see [CS18].

2.2.1. Montgomery curves

Let A,B ∈ Fq such that B(A2 − 4) ̸= 0. The Montgomery curve EA,B over Fq is an elliptic curve defined by the
equation

By2 = x3 +Ax2 + x. (4)

That is, it consists of the set of points P = (x, y) that satisfy the curve equation (for x and y in any extension of
the field Fq), and the point at infinity 0E . We often write EA,B/Fq to emphasize that the curve is defined over the
field Fq . We also write EA when B = 1, and we write E for a generic Montgomery curve. Furthermore, we write
EA,B(Fq) to denote the set of points ofEA,B defined over Fq , whereA is often called the Montgomery coefficient.

Two Montgomery curves are said to be isomorphic over Fq if there is a linear change of coordinates (x, y) 7→
(Dx+R,Cy), with D,C,R ∈ Fq that maps one onto the other. When EA,B and EA′,B′ are not isomorphic over
Fq , but they are over a finite extension of Fq , we say that they are the twist of one another. In particular, EA,B and
EA,B′ are always the quadratic twist of one another by taking C =

√
B/B′, and are isomorphic if and only if

B/B′ is a square in Fq .
LetN be the number of solutions to Equation (4) (including the point 0E). WhenN = 1 mod char(Fq), we

say thatEA,B is supersingular. We are only interested in supersingular curves defined over Fp2 with p = 3 mod 4.
In this case, any supersingular curve EA/Fp2 (with B = 1) has exactly (p + 1)2 points, whereas its quadratic
twists EA,γ/Fp2 , where γ is an arbitrary quadratic non-residue in Fp2 , have exactly (p − 1)2 points and are all
isomorphic.
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2.2.1.1. Isomorphisms between Montgomery curves. For a Montgomery curve EA,B we define its j-invariant

j(EA,B) =
256(A2 − 3)3

A2 − 4
. (5)

The j-invariant characterizes isomorphism classes of elliptic curves over the algebraic closure, i.e., two curves have
the same j-invariant if and only if they are isomorphic or are twists of one another. Given two curves EA,B and
EA′,B′ that are isomorphic, the change of coordinates (x, y) 7→ (Dx+R,Cy) that maps the former onto the latter
is given by

D = λ2
B′

B
, R = λ2

AB′

3B
− A′

3
, C =

λ3B′

B
, λ :=

√
B(2A′3 − 9A′)(3−A2)

B′(2A3 − 9A)(3−A′2)
. (6)

These formulas were obtained by first converting the curves to Short Weierstrass models Ea,b, Ea′,b′ using the for-
mula from [CS18, Section 2.4], and then using the isomorphismEa,b → Ea′,b′ given by (x, y) 7→ (λ2x, λ3y) with
λ2 = (a′b)/(ab′). The formulas are implemented by the IsomorphismMontgomeryCurves algorithm described in
Section 8.2.2.

2.2.2. The group law

The set of points of a Montgomery curve, equipped with the addition operation defined in Sections 2.2.2.1 and 2.2.2.2,
forms an abelian group. Under this addition law, each point P = (x, y) has an inverse −P = (x,−y), and 0E is
the identity element.

In what follows, for a point P ̸= 0E , we refer to its x-coordinate as xP , and to its y-coordinate as yP , i.e.,
P = (xP , yP ). Note that optimized implementations typically use projective coordinates (X : Y : Z) with
x = X/Z and y = Y/Z in order to avoid inversions in the point addition and isogeny formulas below (see, e.g.,
[CS18]). Furthermore, we mostly use x-only arithmetic and represent points only as P = (XP : ZP ), which
means that points are only defined up to the sign of their y-coordinates.

2.2.2.1. Point addition. Let EA,B/Fq be a Montgomery curve, and P = (xP , yP ) and Q = (xQ, yQ) points on
EA,B with P ̸= ±Q. Then we compute their sum R = P +Q with R = (xR, yR) as

xR = Bλ2 − (xP + xQ)−A,

and
yR = λ(xP − xR)− yP ,

where λ = (yP − yQ)/(xP − xQ).
The point at infinity is the neutral element of the law, so P + 0E = 0E + P = P .

2.2.2.2. Point doubling. Let EA,B/Fq be a Montgomery curve, and P = (xP , yP ) a point on EA,B with P ̸=
−P . We compute its double [2]P = P + P = (x[2]P , y[2]P ) as

x[2]P =
(x2P − 1)2

4xP (x2P +AxP + 1)
,

and

y[2]P = yP ·
(x2P − 1)(x4P + 2Ax3P + 6x2P +Axp + 1)

8x2P (x
2
P +AxP + 1)2

.

If P = −P , we set [2]P = 0E .

2.2.2.3. Scalar multiplication. Using the abelian group law, we can define a scalar multiplication [k] : E → E
for k ∈ Z: For positive k, it maps a point P ∈ E to the point [k]P = P + P + · · ·+ P , summing k copies of P .
For negative k, we set [k]P = −[|k|]P . For k = 0, we set [0]P = 0E .

For efficiency, a scalar multiplication is usually performed as a sequence of point doublings and point additions.
Using the Montgomery ladder (see, e.g., [CS18]), the number of elliptic curve point operations is logarithmic in k.

For a point P ∈ E, we call the smallest positive integer m such that [m]P = 0E the order of P .
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2.2.2.4. Point difference. Given the x-coordinates xP and xQ of two points P,Q ∈ E(Fp2), we can determinis-
tically compute the set {r−, r+} = {xP−Q, xP+Q} using the following formula from [RS17, Prop. 3]:

r± =
BXZ ±

√
B2
XZ −BZZBXX
BZZ

, (7)

where

BXX = (xPxQ − 1)2,

BXZ = (xPxQ + 1)(xP + xQ) + 2AxPxQ,

BZZ = (xP − xQ)2.
As xQ = x−Q, we cannot determine which of r+, r− is xP−Q and which is xP+Q based on x coordinates alone.
However, in practice we are also free to replaceQ by−Q and so it suffices to deterministically chose one of the two.
We make this choice by always using the formula for r+, with the choice of square root described in Section 2.1.2.
This routine is referred to as ProjectiveDifference, since in practice it is implemented in projective coordinates as
will be discussed in Section 8.2.3.

2.2.3. Torsion subgroups and deterministic basis computation

For m ∈ Z and E/Fp2 a supersingular curve, we define E[m] to be the m-torsion subgroup of E, which contains
all points P ∈ E(Fp2) such that [m]P = 0E . For m2|#E(Fp2), we have E[m] ∼= Z /mZ×Z /mZ, and
thus E[m] has cardinality m2. Furthermore, there are non-unique points R,S ∈ E[m] that generate E[m], i.e.,
⟨R,S⟩ = E[m], and we call (R,S) a basis of E[m]. The reference implementation represents a basis (R,S) by a
triplet (xR, xS , xRS) of x-coordinates, for efficiency. Technically, this defines (R,S) up to a global sign, i.e., the
representation is the same for (R,S) and (−R,−S). Furthermore, this requires us to use Ladder (see Section 8.2.1)
to compute the x-coordinate of [n]R given only xR.

Throughout this document, f denotes the largest integer such that 2f divides p+1, for p the base prime of the
finite field. In SQIsign, we need to generate a basis (R,S) for E[2e] for e ≤ f , which is well-studied [CJL+17;
SEMR24; ZSP+18]. We describe the deterministic generation of a basis (R,Q) for E[2e] in TorsionBasisToHint,
using a modified version of [ZSP+18, Alg. 3.1]: This algorithm computes the quadratic residuosity of A to ensure
that xR ← −A/(1 + i · b) is a non-square in Fp2 , for a square b. Then, if xR ∈ E(Fp2), this ensures that
xS = −xR −A is also a non-square, and that together (R,S) is a basis of E[2e], when multiplied by the cofactor
(p + 1)/2e. We adjust this algorithm by using that b ∈ Fp is always a square in Fp2 , hence when A is non-
square, any Fp-multiple b · A is of the right form for xR. One can show that for a basis (R,S) sampled using
this algorithm, the point R + S is always above (0, 0), which is a property we assume in later algorithms. To
explicitly have a basis point above (0, 0), we therefore use (R,R+S) as our basis, which we obtain from permuting
(xR, xS , xRS) to (xR, xRS , xS). Computing an xRS given xR and xS must be done deterministically, however, it
is impossible to know given only xR and xS if xRS is the x-coordinate of R + S or R − S. This is not an issue,
as long as an implementation makes the same deterministic choice as the reference implementation, which uses
ProjectiveDifference (see Section 8.2.3).

Sampling such a torsion basis for EA[2f ] can be sped up for the verifier: the algorithm requires knowledge of
the quadratic residuosity ofA and the correct index used to find xP . Both of these can be provided in the signature
as hints: the signer uses TorsionBasisToHint, which generates a basis and the corresponding hints, and includes
the hints in the signature. The verifier uses TorsionBasisFromHint, which takes the hints as input and returns the
basis (xR, xS , xRS).

Note that a basis returned usingTorsionBasisFromHint is guaranteed to have two values xR and xS on the same
twist, even when these values are not verified as points onE. This causes no problems, as long as the order of these
points are verified whenever they are used, which implicitly ensures they lie on E. The reference implementation
does this as described in Section 8.4 and Section 8.5.

For the particular elliptic curveE0, TorsionBasis (Algorithm 2.3) will be used to generate a deterministic basis
of E0[2

f ]. This algorithm is only used for parameter generation, so does not require careful optimization.

2.2.4. Discrete logarithms

Given a finite-field element ζ ∈ Fp2 and a power ζk for an unknown k ∈ Z, the discrete logarithm problem
(DLP) asks to recover k. For elements of large prime order, this problem is suspected to be hard for classical
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Algorithm 2.1 TorsionBasisToHint(A, e)

Input: A non-zero affine Montgomery coefficient A and an integer e ≤ f .
Output: An x-only basis (xR, xS , xRS) of E[2e], together with two hints hA, h.

1: if A is a square then
2: hA ← 1
3: else
4: hA ← 0

5: h← 0
6: if A is square then
7: repeat h← h+ 1, xR ← −1/(1 + i · h) ·A
8: until (1 + h2) is not a square and xR ∈ EA(Fp2)
9: else

10: repeat h← h+ 1, xR ← h ·A
11: until xR ∈ EA(Fp2)
12: xRS ← −xR −A
13: xR ← Ladder((xR : 1), (A+ 2 : 4), p+1

2e )

14: xRS ← Ladder((xRS : 1), (A+ 2 : 4), p+1
2e )

15: xS ← ProjectiveDifference(xR, xRS , (A : 1))
16: if h ≥ 128 then
17: h← 0
18: return (xR, xS , xRS) and (hA, h)

Algorithm 2.2 TorsionBasisFromHint(E, h)

Input: A non-zero affine Montgomery coefficient A, an integer e < f , together with two hints hA, h.
Output: An x-only basis (xR, xS , xRS) of E[2e].

1: if h = 0 then
2: (xR, xS , xRS), (hA, h)← TorsionBasisToHint(A, e)
3: return (xR, xS , xRS)
4: else
5: if hA = 1 then
6: xR ← −1/(1 + i · h) ·A
7: else
8: xR ← h ·A
9: xRS ← −xR −A

10: xR ← Ladder((xR : 1), (A+ 2 : 4), p+1
2e )

11: xRS ← Ladder((xRS : 1), (A+ 2 : 4), p+1
2e )

12: xS ← ProjectiveDifference(xR, xRS , (A : 1))
13: return (xR, xS , xRS)

computers, and underlies the security of traditional Diffie–Hellman cryptography. However, when the order of ζ
is smooth enough, this problem can be efficiently solved. Let µn denote the group of n-th roots of unity, that is,
µn := {ζ ∈ Fp | ζn = 1}. SQIsign only uses primes p such that µ2f ⊂ F∗

p2 , where f is the largest integer such
that 2f divides p + 1. In particular, in SQIsign we consider elements ζ ∈ µ2e ⊂ F∗

p2 with e ≤ f , i.e., elements
whose multiplicative order divides 2e in Fp2 .

Several algorithms exist to solve such discrete logarithms in µ2e , all tracing back to Pohlig–Hellman [PH78].
In our implementation, we use the iterative algorithm NormalizedDlog, shown in Algorithm 2.4, to compute this
discrete logarithm between two elements using the Pohlig–Hellman algorithm. SQIsign only applies this algorithm
to the output of pairing computations (see Section 2.2.5).
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Algorithm 2.3 TorsionBasis0(Fp2)

Input: The field Fp2 = Fp(i).
Output: A basis (P,Q) of E0[2

f ] such that [2f−1]Q = (0, 0).
1: a← 0, P ← 0E
2: repeat
3: a← a+ 1
4: xP ← 1 + ia

5: yP ← (x3P + xP )
p+1
4

6: if y2P = x3P + xP then
7: P ←

[
p+1
2f

]
(xP , yP )

8: until [2f−1]P ̸= 0E and [2f ]P = 0E
9: b← a, Q← 0E

10: repeat
11: b← b+ 1
12: xQ ← 1 + ib

13: yQ ← (x3Q + xQ)
p+1
4

14: if y2Q = x3Q + xQ then
15: Q←

[
p+1
2f

]
(xQ, yQ)

16: until [2f−1]Q ̸∈ {0E , [2f−1]P} and [2f ]Q = 0E
17: if [2f−1]P = (0, 0) then
18: (P,Q)← (Q,P )
19: else if [2f−1](P +Q) = (0, 0) then
20: Q← P +Q

21: return (P,Q)

Algorithm 2.4 NormalizedDlog(ζ0, ζ1)

Input: Two values ζ0, ζ1 ∈ µ2e with e ≤ f .
Output: The value k ∈ [0..2e] such that ζ1 = ζk0 .

1: if e = 1 then
2: return k such that ζ1 = ζk0 by exhaustive search
3: e′ ← ⌊e/2⌋
4: ζ ′0 ← ζ2

e−e′

0

5: ζ ′1 ← ζ2
e−e′

1

6: k′ ← NormalizedDlog(ζ ′0, ζ
′
1)

7: ζ ′′0 ← ζ2
e′

0

8: ζ ′′1 ← ζ2
e′

1

9: k′′ ← NormalizedDlog(ζ ′′0 , ζ
′′
1 )

10: return k = k′ + 2e
′
k′′

2.2.5. Pairings

This section introduces the Weil and Tate-Lichtenbaum pairings of level n. One approach to efficiently compute
the discrete logarithm between points is through pairings. This has been extensively explored in other isogeny-
based schemes in the past, such as SIKE, and has also been proposed to achieve moderate acceleration in the first
round of SQIsign [LWXZ24]. Pairings allow us to translate the elliptic-curve discrete logarithm problem into a
finite-field discrete logarithm problem, which can then be solved efficiently with a function like NormalizedDlog.
This approach is particularly attractive in the context of SQIsign, as we are primarily concerned with discrete
logarithm computations of points belonging to E[2e], where e ≤ f and 2f is the largest power of 2 dividing p+1.
It follows that pairings of degree 2f have an embedding degree of 2, which is very helpful for obtaining faster
pairing computations.
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2.2.5.1. Pairings on elliptic curves. Pairings are bilinear maps A × B → C between abelian groups A, B, and
C. Most relevant for cryptography are the Weil and Tate-Lichtenbaum pairing of level n, where A and B are
subgroups or quotient groups of E(Fq) and C is the group of n-th roots of unity µn ⊆ E(Fq). Note that SQIsign
only requires pairings on elliptic curves, although one can similarly compute such pairings on abelian varieties.

The Weil pairing. Let E be an elliptic curve over Fq and let n ∈ N coprime to charFq . Then the Weil pairing of
level n, introduced by Weil [Wei40], is a map

en : E[n]× E[n]→ µn,

which is bilinear, alternating, non-degenerate, and Galois invariant. The Weil pairing can also be defined for higher-
dimensional abelian varieties (see Section 2.4), where this pairing is used implicitly. The reference implementation,
therefore, does not concretely compute Weil pairings.

The Tate-Lichtenbaum pairing. The Tate-Lichtenbaum pairing is a pairing defined by Tate [Tat62] for abelian
varieties over local fields, with Lichtenbaum [Lic69] showing its efficient computation for Jacobians of curves. Frey
and Rück [FR94] show its cryptographic relevance, including an efficient computation over finite fields. Assume
µn ⊂ Fq . We define the unreduced Tate-Lichtenbaum pairing of level n as a map

Tn : E(Fq)[n]× E(Fq)/nE(Fq)→ F∗
q /(F

∗
q)
n.

As a result, Tn(P,Q) is unique up to n-th powers. In a cryptographic context, we prefer a well-defined, unique
value which we can achieve by raising the result to the power (q − 1)/n. This ensures the final result is a unique
value in µn. Thus, we get the reduced Tate-Lichtenbaum pairing of level n,

tn : E(Fq)[n]× E(Fq)/nE(Fq)→ µn, (P,Q) 7→ Tn(P,Q)(q−1)/n.

Both the reduced and unreduced Tate-Lichtenbaum pairing are bilinear, non-degenerate and Galois invariant.
WhenE/Fp2 is a maximal supersingular curve, andn|p+1, then the reduced Tate-Lichtenbaum pairing is alternate.

2.2.5.2. Use of pairings in SQIsign. The Tate pairing tn allows us to solve discrete logarithm problems faster. In
the following, we will use the fact that forP ∈ E[n], the Tate-Lichtenbaum of tn(P, P ) vanishes, i.e., tn(P, P ) = 1.
For example, if E[n] has a basis P1, P2 ∈ E(Fq) with ζ = tn(P1, P2) an n-th primitive root of unity, and we have
Q ∈ E[n] which we want to express in this basis as Q = [a1]P1 + [a2]P2, then we find that

tn(P1, Q) = tn(P1, [a1]P1 + [a2]P2) = tn(P1, P1)
a1 · tn(P1, P2)

a2 = tn(P1, P2)
a2 = ζa2 .

Similarly, tn(P2, Q) = tn(P2, P1)
a1 = ζ−a1 , hence, given ζ, we can compute two Tate pairings of level n and

solve for a1, a2 by solving two discrete logarithms in µn using NormalizedDlog. In SQIsign, we use Tate pairings
in such a manner for the case n = 2e for e ≤ f to compute the matrix associated to a change of basis: If (P1, P2)
is a basis for E[2f ], which ensures ζ = t2f (P1, P2) is a primitive 2f -th root of unity, and (Q1, Q2) is a basis for
E[2e], then the Tate pairing allows us to compute x1, x2, x3, x4 such that(

x1 x2
x3 x4

)
·
(
P1

P2

)
=

(
Q1

Q2

)
.

We describe this more precisely in ChangeOfBasis (Algorithm 2.5).1 Furthermore, if we want to compute xi that
change a basis (Q1, Q2) of E[2e] into the basis ([2f−e]P1, [2

f−e]P2), we can apply the above algorithm and invert
the resulting matrix.

There are several methods to compute tn efficiently; see Section 8.3 for the choice made in SQIsign and details
on these algorithms.

Algorithm 2.5 ChangeOfBasis2e(E, (P1, P2), (Q1, Q2))

Input: A basis (P1, P2) for E[2f ] and a basis (Q1, Q2) for E[2e].
Output: A change-of-basis matrix (xi), with 1 ≤ i ≤ 4, so thatQ1 = [x1]P1+[x2]P2 andQ2 = [x3]P1+[x4]P2.

1: ζ ← t2e(P1, P2)
2: ζ1 ← t2e(Q1, P2), ζ2 ← 1/t2e(Q1, P1), ζ3 ← t2e(Q2, P2), ζ4 ← 1/t2e(Q2, P1)
3: for i from 1 up to 4 do
4: xi ← 2f−e · logζ(ζi)
5: return (x1, x2, x3, x4)

1One may also use the Weil pairing to compute the change of basis, although at an increase in cost.
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2.3. Isogenies between elliptic curves
For two elliptic curvesE1 andE2 over Fq , an isogeny is a non-constant map φ : E1 → E2 defined coordinate-wise
by polynomial fractions over Fq , that satisfies φ(0E1

) = 0E2
. In particular, φ is a group homomorphism φ : E1 →

E2. Such curves E1 and E2 that are connected through an isogeny are called isogenous. A characterization for
this property is given by the group orders: two curves E1/Fq and E2/Fq are isogenous over Fq if and only if
#E1(Fq) = #E2(Fq).

An isogeny can be almost uniquely characterized by its kernel, i.e., the set ker(φ) = {P ∈ E1 | φ(P ) = 0E2
}.

Concretely, given a subgroup G ⊂ E1 of cardinality N , there is, up to post-composition with isomorphisms, a
unique elliptic curve E2 and isogeny φ : E1 → E2 of degree N with ker(φ) = G. Thus, given a generator Q of
G, we can represent isogenies with kernelG = ⟨Q⟩ by a single point. Furthermore, for each isogeny φ : E1 → E2

there is a unique dual isogeny φ̂ : E2 → E1 of the same degree N , such that the composition φ̂ ◦ φ resp. φ ◦ φ̂ is
the scalar multiplication map [N ] on E1 resp. E2.

For the explicit computation of an isogeny φ over Fq , we can write it as a pair of rational maps f(x) and g(x)
over Fq , such that φ((x, y)) = (f(x), y · g(x)). We can express these functions as ratios of coprime polynomials
over Fq , e.g., f(x) = f1(x)/f2(x), such that the degree deg(φ) = max{deg(f1),deg(f2)}.

Given a point Q of order N , Vélu’s formulas [Vél71] provide a way to compute these rational maps for the
corresponding isogeny φ with ker(φ) = ⟨Q⟩. Vélu’s formulas and variants have complexity Õ(

√
N), thus they

are only practical for relatively small values of N . When N is large and composite, we decompose φ into smaller-
degree isogenies: Let N =

∏
ℓeii be the prime factorization of N . Then we can compute φ as a composition of e1

isogenies of degree ℓ1, e2 isogenies of degree ℓ2, etc. In particular, we compute φ through φ = φE ◦ · · · ◦φ2 ◦φ1

where E =
∑
ei. Since each isogeny φj has some prime degree ℓi | N , this is computationally feasible if the

degree N is smooth, i.e., if N only contains sufficiently small prime factors ℓi.
We now give explicit formulas for isogenies of small degree 2 and 4. We stress once again that the kernel

only defines the isogeny up to post-composition with an isomorphism. The literature abounds in formulas for
isogenies of Montgomery curves, however these may disagree on the equation of the image curve. A compliant
implementation of SQIsign must implement the isogeny formulas given below. Failing to do so risks producing
mathematically meaningful but invalid signatures.

Although we give formulas in affine (x, y) coordinates here, our implementation uses projective coordinates;
see Section 8.4 for more details.

2.3.1. 2-isogenies

LetQ ∈ EA,B be a point of order 2 generating the kernel of a 2-isogeny φ : EA,B → EA′,B′ . We must distinguish
two cases:

• Q = (0, 0): the isogeny is defined by

φ(x, y) =

(
1√

A2 − 4

x2 +Ax+ 1

x
,

1
4
√
A2 − 4

· y · x
2 − 1

x2

)
,

and the image curve is defined by

(A′, B′) =

(
− 2A√

A2 − 4
, B

)
.

• Q = (xQ, 0) with xQ ̸= 0: in this case, we follow [JAC+20; Ren18] and define

φ(x, y) =

(
xQx

2 − x
x− xQ

,
√
xQ · y ·

xQx
2 − 2x2Qx+ xQ

(x− xQ)2

)
,

and
(A′, B′) =

(
2(1− 2x2Q), B

)
.

In both cases, the point (0, 0) on EA′,B′ is in the kernel of the dual isogeny φ̂. This ensures that the first
formula is only used at the start of a (non-backtracking) chain of isogenies.

In Chapter 8, we depict algorithms implementing the caseQ = (xQ, 0) inTwoIsogenyCodomain (which, given
Q, computes the codomain of the 2-isogeny) and TwoIsogenyEval (which, givenQ and another point P , computes
the image of P under the isogeny generated by Q). The singular case Q = (0, 0) is dealt with analogously in
TwoIsogenyCodomainSingular and TwoIsogenyEvalSingular.
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2.3.2. 4-isogenies

For efficiency purposes, some implementations may prefer to use 4-isogeny formulas instead. For compatibility,
these must be equivalent to the compositions of the 2-isogeny formulas above. Let Q ∈ EA,B be a point of order
4 and let φ : EA,B → EA′,B′ be the associated 4-isogeny. We distinguish three cases.

• Q = (1, yQ): then [2]Q = (0, 0). Composing the first formula with the second one we get:

φ(x, y) =

(
1

A− 2

(x+ 1)2(x2 +Ax+ 1)

x(x− 1)2
,

1
3
√
A− 2

· y · (x+ 1)(x4 − 4x3 − 2x2 − 4Ax2 − 4x+ 1)

x2(x− 1)3

)
and

(A′, B′) =

(
2
6 +A

2−A
,B

)
.

• Q = (−1, yQ): then, likewise:

φ(x, y) =

(
1

A+ 2

(x− 1)2(x2 +Ax+ 1)

x(x+ 1)2
,

1
3
√
A+ 2

· y · (x− 1)(x4 + 4x3 − 2x2 + 4Ax2 + 4x+ 1)

x2(x+ 1)3

)
and

(A′, B′) =

(
2
6−A
2 +A

,B

)
.

• Q = (xQ, yQ) with xQ ̸= ±1: then

φ(x, y) =

(
(x(x2Q + 1)− 2xQ)(xxQ − 1)

2
x

(2xxQ − x2Q − 1)(x− xQ)2
,

x2Q

√
2(x3Q + xQ) · y ·

(xxQ − 1)
(
8x2x2Q + (x2Q + 1)(x4 − 4x3xQ + 2x2x2Q − 4xxQ + 1)

)
(x− xQ)3(2xxQ − x2Q − 1)2

)
and

(A′, B′) = (2− 4x4Q, B).

Note that these formulas differ in a sign from those made popular in [CLN16; JAC+20] for SIKE.
In Chapter 8, we depict algorithms implementing the caseQ = (xQ, yQ) forxQ ̸= ±1 inFourIsogenyCodomain

(which, givenQ, computes the codomain of the 4-isogeny) and FourIsogenyEval (which, givenQ and another point
P , computes the image of P under the isogeny generated by Q). We do not require the other cases in SQIsign.

2.4. Isogenies between principally polarized abelian surfaces
In SQIsign, we use isogenies in dimension 2 as a tool to efficiently compute isogenies between elliptic curves of
non-smooth degree. In this section, we introduce the necessary background for their computation.

Principally polarized abelian surfaces (PPAS) are a natural generalization of elliptic curves (see Section 2.2)
to two dimensions. In particular, PPAS’s are geometric objects defined by polynomial equations to which we
can associate a group whose group law is given by rational functions (i.e., fractions of polynomials). PPAS are
isomorphic (over an algebraically closed field) to either one of the following [OU73]:

(1) A product of elliptic curves E1 × E2;
(2) A Jacobian Jac(C) of a genus-2 hyperelliptic curve C.

The arithmetic on the Cartesian product A := E1 × E2 of elliptic curves E1, E2 follows immediately from
the arithmetic of elliptic curves. Indeed, the addition of two points (P1, P2), (Q1, Q2) ∈ A is defined as

(P1, P2)⊕ (Q1, Q2) := (P1 ⊕1 Q1, P2 ⊕2 Q2),

where ⊕1 and ⊕2 is the group law on the elliptic curves E1 and E2, respectively. The group law ⊕ has identity
0A := (0E1

, 0E2
).

We briefly detail the second type of PPAS. Every hyperelliptic curve of genus-2 defined over Fp2 can be written
in the form

C : y2 = f(x), where f squarefree with deg(f) = 5 or 6,
when p > 5. Unlike elliptic curves, the curve C does not form a group under point addition. Instead, we construct
the Jacobian Jac(C) [Mil86], which is the group associated to the curve C. Note that in the case of an elliptic
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curve E we have Jac(E) ∼= E, which is why the construction of the Jacobian can usually be avoided. The group
law on A := Jac(C) with identity 0A can be computed using Cantor’s algorithms [Can87].

An isogeny Φ : A1 −→ A2 between PPAS is a surjective map defined coordinate-wise by rational fractions
which is also a group homomorphism. There are three types of isogenies Φ we work with, depending on what type
of PPAS A1 and A2:

• If A1 = E1 × E2 and A2 = Jac(C) for a genus-2 hyperelliptic curve C, then Φ is a gluing isogeny.
• If A2 = E1 × E2 and A1 = Jac(C), then Φ is a splitting isogeny.
• Otherwise, A1 and A2 are both Jacobians and Φ is called generic.

Similarly to elliptic curve isogenies, isogenies between PPAS have a finite kernel ker(Φ) = {P ∈ A1 | Φ(P ) =
0A2} and are determined by their kernel up to post composition with an isomorphism. We say that Φ is an (N,N)-
isogeny when its kernel ker(Φ) is generated by two linearly independent points P,Q ∈ A1 of order N . In this
context, linearly independent means that for all integers k and l, we have [k]P + [l]Q = 0A1

if and only if N
divides k and l. We write ker(Φ) = ⟨P ⟩⊕ ⟨Q⟩. The isogeny Φ can then be represented by P andQ and computed
from these points with generalizations of Vélu’s formulas in time O(N2) [LR22]. Not all choices of linearly
independent N -torsion points P,Q define an isogeny. To define an isogeny of PPAS, it is necessary and sufficient
that P and Q are isotropic, i.e., P,Q have trivial N -Weil pairing:2 eN (P,Q) = 1.

Suppose N has prime decomposition
∏
ℓeii . Rather than computing an (N,N)-isogeny Φ with complexity

O(N2), we decompose this isogeny as
Φ = Φr ◦ · · · ◦ Φ1,

where the Φi are (ℓi, ℓi)-isogenies. The isogeny Φ can now be computed more efficiently in O(
∑
eiℓ

2
i ). For

SQIsign, we specialize to the case of (2e, 2e)-isogenies

Φ : E1 × E2 −→ E3 × E4

between elliptic curve products E1 ×E2 and E3 ×E4 defined over Fp2 , that we decompose into a chain of (2, 2)-
isogenies of length e. For cryptographic sized primes p, we expect the first isogeny of the chain Φ1 : E1×E2 −→
A1 to be a gluing isogeny, the last step Φe : Ae−1 −→ E3 × E4 to be a splitting isogeny, and all intermediate
isogenies to be generic.

2.4.0.1. Implementation details for (2, 2)-isogenies. In Section 8.5, we give algorithmic details on how (2, 2)-
isogenies are computed. For practical purposes, we use theta coordinates of level 2 to represent points on a PPAS.
This is analogous to the use of the x-coordinate on elliptic curves. In particular, we highlight the following algo-
rithms that are depicted:

• ThetaDBL: on input of a point P (in theta coordinates) and the constants consts, outputs [2]P (in theta
coordinates).

• GenericCodomainWith8Torsion: given theta coordinates of 8-torsion points T ′′
1 , T

′′
2 on domain surface

A, this algorithm outputs the dual theta null point (α : β : γ : δ), its inverse (α−1 : β−1 : γ−1 : δ−1),
and the theta null point 0B of the image B of the isogeny Φ : A→ B with ker(Φ) = ⟨[4]T ′′

1 ⟩⊕ ⟨[4]T ′′
2 ⟩.

• GenericCodomainWith4Torsion: given theta coordinates of a 4-torsion point T ′
1 on domain surface A

satisfying [2]T ′
1 ∈ ker(Φ), and the theta null point 0A of A, this algorithm outputs the dual theta null

point (α : β : γ : δ), its inverse (α−1 : β−1 : γ−1 : δ−1), and the theta null point 0B of the image B of
Φ : A→ B.

• GenericCodomain: given the theta null point 0A of domainA, computes the dual theta null point (α : β :
γ : δ), its inverse (α−1 : β−1 : γ−1 : δ−1), and the theta null point 0B of the image B of (2, 2)-isogeny
Φ : A→ B.

• GenericEval: given a point P (in theta coordinates) on domain surface A and the point (α−1 : β−1 :
γ−1 : δ−1), outputs the theta coordinates of Φ(P ).

• GluingCodomain: given theta coordinates of 8-torsion points T ′′
1 , T

′′
2 on domain product surface, this

algorithm outputs the dual theta null point (α : β : γ : 0), its “inverse” (α−1 : β−1 : γ−1 : 0), the theta
null point 0B of the image surfaceA of the isogeny Φ : E1×E2 → Awith ker(Φ) = ⟨[4]T ′′

1 ⟩⊕⟨[4]T ′′
2 ⟩,

J the dual of the theta point Φ(T ′′
1 ) and a change-of-basis matrix N (re-used for evaluation).

• GluingEval: given a point P ∈ E1×E2, T ′′
1 a 8-torsion point such that [4]T ′′

1 ∈ ker(Φ), J the dual of the
theta point Φ(T ′′

1 ) on A, and the change-of-basis matrix N computed during GluingCodomain, outputs
the theta coordinates of Φ(P ).

2The N -Weil pairing can be defined on PPAS as is done with elliptic curves.
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• GluingEvalSpecial: given a point P ∈ E1 × E2 of the form (P1, 0) or (0, P2), (α−1 : β−1 : γ−1 : 0)
the “inverse” of the dual theta null point over A, and the change-of-basis matrix N computed during
GluingCodomain, outputs the theta coordinates of Φ(P ).

• SplittingIsomorphism: given theta null point 0A on surface A ∼= E1 × E2, computes the isomorphism
whose action on 0A gives the theta null point associated with the product theta structure.

We defer the details of the algorithms to Chapter 8.

2.4.1. Computing a (2, 2)-isogeny chain between products of elliptic curves

We now describe the computation of a chain of (2, 2)-isogenies. Consider a (2e, 2e)-isogeny Φ : E1 × E2 −→
E3 × E4 between products of elliptic curves. Knowing two generators P and Q of ker(Φ), we explain how to
compute Φ as a chain of (2, 2)-isogenies:

E1 × E2
Φ1−−→ A1

Φ2−−→ A2 · · · Ae−2
Φe−1−−→ Ae−1

Φe−−→ E3 × E4.

To compute each isogeny of the chain, it suffices to determine the theta null point of their codomain. Indeed, once
this is known, the isogeny can be evaluated. A naïve method to compute of a chain of (2, 2)-isogenies proceeds as
follows:

(1) Compute the gluing isogeny Φ1 : E1 × E2 −→ A1 using the 8-torsion points [2e−2]P and [2e−2]Q
lying above ker(Φ1) = ⟨[2e−1]P, [2e−1]Q⟩ using GluingCodomain, and compute Φ1(P ),Φ2(P ) using
GluingEval.

(2) For all i ∈ {2, · · · , e − 2}, compute the generic isogeny Φi : Ai−1 −→ Ai using the 8-torsion
points [2e−i−2]

(
Φi−1 ◦ · · · ◦ Φ1(P )

)
and [2e−i−2]

(
Φi−1 ◦ · · · ◦ Φ1(Q)

)
lying above ker(Φi) (see

GenericCodomainWith8Torsion).
(3) Compute the generic isogeny Φe−1 : Ae−2 −→ Ae−1 given the 4-torsion points Φe−2 ◦ · · · ◦Φ1(P ) and

Φe−2 ◦ · · · ◦ Φ1(Q) lying above ker(Φe−1) (see GenericCodomainWith4Torsion).
(4) Compute the generic isogenyΦe : Ae−1 −→ E3×E4 given the 2-torsion kernel pointsΦe−1◦· · ·◦Φ1(P )

and Φe−1 ◦ · · · ◦ Φ1(Q) (see GenericCodomain).
(5) Compute the change of coordinates from the system of theta coordinates on E3 × E4 naturally induced

by Φe to a system of product theta coordinates in order to express image points on E3 ×E4 in (X : Z)-
Montgomery coordinates on each component E3 and E4 (see SplittingIsomorphism).

To avoid the square root computations in Steps (3) and (4), we can start with isotropic pointsP,Q ∈ (E1×E2)[2
e+2]

lying above ker(Φ), i.e., such that ker(Φ) = ⟨[4]P, [4]Q⟩ and e2e+2(P,Q) = 1. Then, for all i ∈ {2, · · · , e}, we
compute Φi : Ai−1 −→ Ai using the 8-torsion points [2e−i]

(
Φi−1 ◦ · · · ◦Φ1(P )

)
and [2e−i]

(
Φi−1 ◦ · · · ◦Φ1(Q)

)
lying above ker(Φi) and GenericCodomainWith8Torsion. This optimization is only possible when 2e+2-torsion
points are defined over Fp2 , which is not always the case.

Rather than following this naïve strategy, we use a balanced strategy. By storing intermediate points obtained
during the doublings and pushing them through each isogeny, we can reduce the number of executions of the
doubling algorithm ThetaDBL to a quasi-linear number O(e log(e)). Note that we do not choose to use optimal
strategies, which were first introduced in the context of SIDH/SIKE [JD11, Section 4.2.2], as they give only a small
efficiency gain, but have a moderate memory cost due to the need to store the (precomputed) strategies.

2.4.1.1. Probability of failure. The computation of a (2, 2)-isogeny chain may fail if we encounter a splitting
before the final step. In Section 9.2 we argue this failure happens with probability Õ(1/p) for the chains computed
during key generation and signing. This failure does not happen during the verification of an honest signature, thus
verification will simply reject if it encounters it.

2.4.1.2. Implementation details for chains of isogenies. In Section 2.4.1, we also give algorithmic details on
how chains of isogenies are computed, building on the algorithms depicted for (2, 2)-isogenies. In particular, we
present the following algorithms:

• Isogeny22Chain: on input isotropic points P,Q ∈ E1 × E2 of order 2e, and an array pts containing
points on E1 × E2, outputs a (2, 2)-isogeny chain Φ = Φe ◦ · · · ◦ Φ1 such that ker(Φ) = ⟨P,Q⟩, and
evaluated points {Φ(P ) : P ∈ pts}, computed using balanced strategies.

• Isogeny22ChainWithTorsion: on input isotropic points P,Q ∈ E1×E2 of order 2e+2, and an array pts
containing points onE1×E2, outputs a (2, 2)-isogeny chainΦ = Φe◦· · ·◦Φ1 such that ker(Φ) = ⟨P,Q⟩,
and evaluated points {Φ(P ) : P ∈ pts}, computed using balanced strategies.
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More details of the algorithms can be found in Chapter 8.



CHAPTER 3

Basics of Quaternions

This chapter describes the world of quaternions, which we require for key-generation and signing. Specifically,
verification only relies on the material in Chapter 2. This chapter describes quaternion algebras and their ideals
(Section 3.1) and algorithms for moving between the world of quaternions and the world of isogenies (Section 3.2).

3.1. Quaternions and ideals
Quaternion algebras are generalizations of Hamilton’s quaternions. These are 4-dimensional vector spaces gener-
ated by four elements {1, i, j, k}, and non-commutative algebras with the following multiplication rules:

i2 = a, j2 = b, ij = −ji = k,

where a and b are elements of the base field. The case of interest in SQIsign is that of quaternion algebras over
the rational numbers Q ramified at a prime p and∞. Since these quaternion algebras are all isomorphic, we speak
of the quaternion algebra ramified at p and∞, denoted by Bp,∞. The prime p in SQIsign is precisely the same as
the characteristic of the finite field discussed above. Because p ≡ 3 (mod 4), the basis of Bp,∞ can be taken such
that

i2 = −1, j2 = −p, ij = −ji = k.

Then, elements of Bp,∞ are represented as 5-tuples of integers (a, b, c, d, r) ∈ Z5, representing
a+ bi+ cj + dk

r
,

where a canonical representation is obtained by reducing the common denominator.

3.1.1. Big integers

SQIsign needs to represent big integers of variable size. The maximum size reached by the integers depends on the
system parameters, however, it is difficult to estimate, especially for intermediate results. For this reason, a dynamic
multi-precision integer library such as GMP1 is recommended. Future versions of this specification may determine
the exact bounds on the largest representable integer and thus enable the use of fixed-precision big integers.

The operations SQIsign needs to perform on big integers are part of most big integer libraries, and we will
thus list them without details:

• Basic arithmetic (addition, multiplication, . . . ) of integers;
• Uniform sampling of integers from an interval;
• Approximate and exact integer square roots;
• Pseudo-primality testing using the Miller–Rabin test;
• Extended greatest common divisor XGCD: given (a, b), find integers (g, u, v) such that ua+ bv = g =
gcd(a, b) > 0 and if both a ̸= 0 and b ̸= 0, then 1 ≤ au ≤ |ab|/g and −|ab|/g < bv ≤ 0;

• Arithmetic modulo integers;
• Legendre symbol;
• DyadicValuation of an integer
• Square roots modulo primes.

With the exception of modular square roots (for which pseudocode is given in ModularSQRT), all these algo-
rithms are implemented in GMP, which is the big integer library used by SQIsign reference implementation. The
XGCD algorithm of GMP does however not enforce that u ̸= 0 which is required in SQIsign.

1https://gmplib.org/

21
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Algorithm 3.1 ModularSQRT(n,m)

Input: An odd prime m and an integer n such that n is a square modulo m.
Output: The modular square root x of n, i.e., an integer x such that x2 ≡ n mod m.

1: if n ≡ 0 mod m then
2: return 0
3: if m ≡ 3 mod 4 then
4: return n(m+1)/4 mod m
5: if m ≡ 5 mod 8 then
6: if n(m−1)/4 ̸≡ 1 mod m then
7: return n(m+3)/8 mod m
8: else
9: return 2n(4n)(m−5)/8 mod m

// Now m ≡ 1 mod 8, so use Tonelli-Shanks algorithm
10: n← 2 and e← DyadicValuation(p− 1)
11: q ← (p− 1)/2e

12: while w is a square modulo m do
13: w ← w + 1

14: z ← wq mod m and r ← e and y ← nq mod m
15: x← n(q+1)/2 mod m and f ← 2e−2

16: for i from 0 up to e− 1 do
17: b← yf mod m
18: if b = p− 1 then
19: x← xz mod m
20: y ← xz2 mod m

21: z ← z2 mod m
22: f ← f/2

23: return x

3.1.2. Floating-point numbers

SQIsign makes a limited use of floating-point numbers in the implementation of lattice reduction (see Section 3.1.4.1).
The native floating-point types of most platforms are insufficient for SQIsign’s needs, however any type with at
least 24 bits of mantissa and at least 20 bits of exponent is largely sufficient for all security levels.

A standard way to build such a type is to pack a native floating-point type to hold the mantissa together with
a native integer type to hold the exponent. The reference implementation uses the “double plus exponent” header
library [PZ24] to this effect.

The basis output by a given lattice reduction algorithm implemented using floating-point numbers is highly
sensitive to many factors, such as the exact order of operations performed (due to the non-associativity of floating-
point numbers), the rounding mode in use, and possibly even the choice of compiler flags. Therefore, it may prove
challenging for an alternative implementation of SQIsign to exactly reproduce the Known Answer Tests described
in Chapter 6; however, this does not preclude the generation of valid signatures, which are verified by a correct
implementation of Algorithm 4.9.

3.1.3. Basic integer linear algebra

SQIsign needs to manipulate several integer matrices of small dimension. The most common operations are on
2× 2 and 4× 4 matrices, with occasional computations on 4× n or n× 4 matrices for larger n (up to n = 16).

Depending on the use case, these matrices may be seen as having coefficients in Z or in Z /dZ for some integer
d.

3.1.3.1. Basic operations on integer vectors and matrices. Basic operations such as matrix-vector and matrix-
matrix multiplication can be implemented using the schoolbook method.
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For determinants and inversion of 2× 2 matrices the standard formulas can be used:

det

(
a b
c d

)
= ad− bc,

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

For determinants and inversion of 4 × 4 matrices a similar Laplacian formula [Ebe08] computes the determinant
and the adjugate matrix using 78 ring operations.

3.1.3.2. Hermite normal form. The Hermite normal form (HNF) is a generalization of the reduced echelon form
for matrices with integer coefficients. A matrix H is said to be in (column-style) HNF if it satisfies the following
conditions:

• It is upper triangular (i.e., hij = 0 for j < i) and any columns of zeros are located to the left;
• The leading coefficient, or pivot, of a nonzero row is always strictly right of the leading coefficient of the

row above it; moreover, it is positive.
• The elements to the left of pivots are zero and elements to the right of pivots are nonnegative and strictly

smaller than the pivot.

Algorithm 3.2 HNF(M)

Input: An integer matrix M with d rows and c ≥ d columns with rank d. Its columns are denoted by Mt
1 to Mt

c,
and the coefficient in row r and column l is denoted by Mr,l.

Output: The HNF of M.
1: for i from d down to 1 do
2: for j from i− 1 down to 1 do
3: if Mi,i and Mi,j are both 0 then
4: g, u, v ← 1, 1, 0
5: else
6: g, u, v ← XGCD(Mi,i,Mi,j) // After this step, uMi,i + vMi,j = g and u > 0

7: Mt
i ← uMt

i + vMt
j // After this step Mi,i equals g

8: for j from i− 1 down to 1 do
9: g ←Mi,j/Mi,i // g is an integer

10: Mt
j ←Mt

j − gMt
i // After this step Mi,j = 0

11: for j from i+ 1 up to c do
12: r ←Mi,j mod Mi,i // After this r is in [0,Mi,i − 1]

13: g ← (Mi,j − r)/Mi,i // g is an integer
14: Mt

j ←Mt
j − gMt

i // After this step Mi,j = r ∈ [0,Mi,i − 1]

15: return M

A matrix A is said to have H for HNF if H is in HNF and there exists a unimodular matrix U such that
AU = H, i.e., U has integer coefficients and determinant ±1. Then, A and H have the same column space, and
H is unique, thus giving a canonical representation for A’s column space. An algorithm for computing the HNF
of arbitrary matrices is presented in [Coh93, § 2.4.2]. In SQIsign this algorithm is used on 4× 4, 4× 8 and 4× 16
integer matrices, all of which have rank 4. An example of an algorithm computing the HNF for full-rank matrices
is given in Algorithm 3.2. Any efficient algorithm producing the same output can be used equivalently.

3.1.4. Lattices

A symmetric bilinear form on a Q-vector space V is a mapping that to any a,b ∈ V associates a value ⟨a,b⟩ ∈ Q
with the properties

• ⟨a,b⟩ = ⟨b,a⟩,
• ⟨a+ b, c⟩ = ⟨a, c⟩+ ⟨b, c⟩,
• ⟨λa,b⟩ = λ ⟨a,b⟩,

for any a,b ∈ V and any λ ∈ Q. A finite-dimensional vector space equipped with a symmetric bilinear form is
called a quadratic space. Two elements a,b are said orthogonal when ⟨a,b⟩ = 0. Every quadratic space admits
an orthogonal basis, i.e., a basis such that any two elements are orthogonal.
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To any symmetric bilinear form is associated a quadratic form defined by Q(a) = ⟨a,a⟩. If Q(a) > 0 for all
a ̸= 0, the quadratic form is called positive definite and so are the bilinear form and the quadratic space. In this
case we call Q(a) the length of the vector a. An example of positive definite symmetric bilinear form is the inner
product a · b of Qn, its associated quadratic form being the squared Euclidean norm ∥a∥2.

A lattice of V is the set of all integer linear combinations of a basis of V . Two bases of V generate the
same lattice if and only if the change-of-basis matrix is unimodular. Given a basis b0, . . . ,bd−1 of a quadratic
space, its Gram matrix is the symmetric matrix whose (i, j)-th entry is ⟨bi,bj⟩. This matrix uniquely determines
the bilinear form on the lattice spanned by b0, . . . ,bd−1; in particular, it is diagonal if and only if the basis is
orthogonal. Lattices of quadratic spaces do not always admit an orthogonal basis. The goal of lattice reduction is
to compute a basis of a lattice that is “as orthogonal as possible” in a precise sense.

3.1.4.1. Lattice reduction.

Definition 3.1.1 (Reduced basis). Let b0, . . . ,bd−1 be a basis of a postive definite quadratic space. Define the
Gram-Schmidt vectors bi as

bi = bi −
i−1∑
j=0

µi,jbj , where µi,j =
ri,j
rj,j

and ri,j =
〈
bi,bj

〉
. (8)

The basis is said to be (η, δ)-reduced for parameters 1
2 < η < 1 and 1

4 < δ < 1 if:
• |µi,j | < η for 0 ≤ j < i < d, and
•
〈
bi,bi

〉
≥ (δ − µ2

i,i−1)
〈
bi−1,bi−1

〉
for 1 ≤ i < d.

A symmetric matrix is said to be (η, δ)-reduced if it is the Gram matrix of an (η, δ)-reduced basis.

The L2 algorithm of [NS09] takes as input a basis of a lattice and its associated Gram matrix and outputs
an (η, δ)-reduced basis for the same lattice, along with its associated Gram matrix. This algorithm only applies
(multiple precision) integer operations on the lattice basis and the Gram matrix. Internally, however, it uses floating-
point operations to keep track of the values ri,j and µi,j for i ≥ j, called the GSO family in [NS09] (see also [NV10,
Chapter 5]). We reproduce pseudocode for L2 in Algorithm 3.3. Numbers, vectors and matrices that are stored as
floating-point values are indicated by the type annotation :: float. Similarly, all casts from integer to floating point
are explicitly indicated by the operator float().

Algorithm 3.3 L2η,δ((b0, . . . ,bd−1),G)

Input: A basis (b0, . . . ,bd−1) of a d-dimensional quadratic space, the associated d× d Gram matrix G.
1: Parameters: 1

2 < η < 1, 14 < δ < 1.
Output: A (η, δ)-reduced bases of the same lattice, its associated Gram matrix.

2: δ̄ ← float
(
δ+1
2

)
, η̄ ← float

(
η+0.5

2

)
3: r0,0 ← float(G0,0), µ0,0 ← float(1), T ← [float(0), float(0), float(0), float(0)]
4: k = 1
5: while k < d do
6: (b0, . . . ,bd−1),G, r, µ← SizeReduce((b0, . . . ,bd−1),G, k, r, µ, η̄)
7: T0 ← float(Gk,k)
8: for i from 1 up to k − 1 do
9: Ti ← Ti−1 − µk,(i−1)rk,(i−1)

10: s← min{0 ≤ i ≤ k such that Tj < δ̄rj,j for all i ≤ j < k}
11: if k ̸= s then
12: (b0, . . . ,bd−1),G, r, µ← InsertBefore((b0, . . . ,bd−1),G, k, s, r, µ)
13: k ← s
14: k ← k + 1

15: return (b0, . . . ,bd−1),G

SQIsign only manipulates quadratic spaces and lattices of dimension 4. The elements of the space are inte-
ger vectors of length 4 themselves, typically represented as column vectors. Thus a lattice basis is conveniently
represented by a 4× 4 integer matrix, and the operations in SizeReduce and InsertBefore are easily understood as
multiplying it by elementary unimodular matrices.
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Algorithm 3.4 ExtendGSOFamily(G, k, r :: float, µ :: float)
Input: G a d× d Gram matrix, index 1 ≤ k < d, the GSO family r, µ up to row k − 1.
Output: The GSO family r, µ up to row k.

1: for j from 0 up to k do
2: rk,j ← float(Gk,j)
3: for l from 0 up to j − 1 do
4: rk,j ← rk,j − rk,lµj,l
5: if j < k then
6: µk,j ← rk,j

rj,j

7: return r, µ

Algorithm 3.5 SizeReduce((b0, . . . ,bd−1),G, k, r :: float, µ :: float, η̄ :: float)

Input: A basis (b0, . . . ,bd−1) of a quadratic space, its d× d Gram matrix G, index 1 ≤ k < d, the GSO family
r, µ up to row k − 1, parameter 1

2 < η̄ < 1.
Output: (b0, . . . ,bd−1) size-reduced basis of the same lattice, its Gram matrix G, the GSO family r, µ up to row

k.
1: done← false
2: while not done do
3: r, µ← ExtendGSOFamily(G, k, r, µ)
4: done← true
5: for i from k − 1 down to 0 do
6: if |µk,i| > η̄ then
7: done← false
8: X ← ⌊µk,i⌉ // Round to the closest integer
9: bk ← bk −Xbi // Update basis

10: for j from 0 up to d− 1 do
11: Gk,j ← Gk,j −XGi,j // Update Gram matrix

12: for j from 0 up to d− 1 do
13: Gj,k ← Gj,k −XGj,i // Update Gram matrix

14: for j from 0 up to i− 1 do
15: µk,j ← µk,j − float(X)µi,j // Update µ

16: return (b0, . . . ,bd−1),G, r, µ

Algorithm 3.6 InsertBefore((b0, . . . ,bd−1),G, k, s, r :: float, µ :: float)

Input: A basis (b0, . . . ,bs, . . . ,bk, . . . ,bd−1) of a quadratic space, its d × d Gram matrix G, indices 0 ≤ s <
k < d, the GSO family r, µ up to row k.

Output: The basis (b0, . . . ,bk,bs, . . .bd−1) where bk has been inserted before bs, the associated Gram matrix,
the GSO family r, µ up to row s.

1: for j from k down to s+ 1 do
2: swap bj and bj−1

3: for i from 0 up to d− 1 do
4: swap Gi,j and Gi,j−1

5: for i from 0 up to d− 1 do
6: swap Gj,i and Gj−1,i

7: rs,s ← float(Gs,s)
8: for i from 0 up to s− 1 do
9: µs,i ← µk,i

10: rs,i ← rk,i
11: rs,s ← rs,s − µs,irs,i
12: return (b0, . . . ,bd−1),G, r, µ
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1 i j ij
1 1 i j ij
i i −1 ij −j
j j −ij −p pi
ij ij j −pi −p

Figure 1. Multiplication table for Bp,∞, the quaternion algebra ramified at a prime p and +∞.

The parameters η and δ have relatively little impact on the performance of SQIsign, as long as they are taken
close to 1/2 and 1 respectively. Following standard practice [FPLLL], they can be taken as η = 0.51, δ = 0.99.

Regarding the floating-point operations, [NS09, Theorem 2] shows that 24 bits of mantissa are largely sufficient
for all three security levels of SQIsign. On the other hand, exponents at least as large as the volume of the lattice
are required, which is why we recommend to use at least 20 bits of exponent for implementing the floating-point
operations.

3.1.4.2. Lattice enumeration and sampling. Given a lattice Λ generated by a basis (b0, . . . ,bd−1) of a positive
definite quadratic space, two related tasks are enumerating all vectors of Λ of length less than a given bound
and uniformly sampling from the same set. A common solution to both consists in determining a parallelogram
containing all the vectors of interest and enumerating/sampling from the parallelogram, rejecting the vectors whose
length surpasses the bound.

SQIsign only needs to implement the sampling variant of the algorithm. For this, we adapt in LatticeSampling
an enumeration algorithm of Dieter [Die75]. For reference, we prove in Appendix A that our algorithm is correct
and argue that, under mild heuristics, it terminates in a small number of iterations of the main loop. Better algo-
rithms exist for enumeration [FP85], however they are not easily adapted to sampling uniformly.

Algorithm 3.7 LatticeSampling((b0, . . . ,bd−1),G, B)

Input: A basis (b0, . . . ,bd−1) of a quadratic space, its d× d Gram matrix G, an integer B > 0.
Output: A uniformly random vector of length ≤ B in the lattice generated by (b0, . . .bd−1).

1: Initialize Id to the d× d identity matrix
2: U,H← L2η,δ(Id,G

−1) // Parse columns of U and Id as basis vectors
3: repeat
4: for i from 0 up to d− 1 do
5: Bi ←

⌊√
BHi,i

⌋
6: Sample xi uniformly from [−Bi, Bi]
7: (y0 · · · yd−1)← (x0 · · ·xd−1)U

−1

8: until (y0 · · · yd−1)G(y0 · · · yd−1)
t ≤ B

9: return y0b0 + · · ·+ yd−1bd−1

3.1.5. Quaternions and ideal lattices

SQIsign keeps track of elementsα ∈ Bp,∞ and of full-rank latticesα1 Z+α2 Z+α3 Z+α4 Z, where (α1, . . . , α4)
is basis of Bp,∞ as a Q-vector space. We now describe how these objects are represented and manipulated.

3.1.5.1. Basic quaternion arithmetic. We already mentioned that quaternions are represented by 5 integers as

α =
a+ bi+ cj + dk

r
.

The basic arithmetic operations (addition, multiplication, etc.) are handled according to the usual rules, reducing
common denominators where necessary. Multiplication follows from the three axioms i2 = −1, j2 = −p, ij =
−ij = k; we report the multiplication table in Section 3.1.5.1.

Some other specific operations are as follows. The conjugate ᾱ of α is the element

ᾱ =
a− bi− cj − dk

r
.
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Their reduced trace is
tr(α) = tr(ᾱ) = α+ ᾱ =

2a

r
,

and their reduced norm is
nrd(α) = nrd(ᾱ) = αᾱ =

a2 + b2 + p(c2 + d2)

r2
.

The map
⟨α, β⟩ = tr(αβ̄) (9)

is a symmetric bilinear form, turning Bp,∞ into a quadratic space. Additionally
⟨α, α⟩ = tr(αᾱ) = 2 nrd(α),

implying that the quadratic space is positive definite.

3.1.5.2. Quaternion lattices. A lattice is defined by a basis (α1, α2, α3, α4) of Q-linearly independent quater-
nions. By convention throughout this specification, elements are represented as columns of a matrix L, so that

(α1 α2 α3 α4) = (1 i j k) · L
is the row vector describing the basis.2

The dual of a lattice Λ is defined as
Λ⋆ = {f ∈ B⋆p,∞ | ∀x ∈ Λ, f(x) ∈ Z},

where B⋆p,∞ denotes the space of linear functions Bp,∞ → Q. Writing (1⋆, i⋆, j⋆, k⋆) for the basis of the dual
lattice (Z+iZ+j Z+kZ)⋆, if Λ is generated by a basis (1 i j k) ·L, then Λ⋆ is generated by L−1 · (1⋆ i⋆ j⋆ k⋆)t.

In what follows we are going to abuse notation and identify the columns (resp. rows) of a matrix defining a
lattice basis with the lattice (resp. dual lattice) itself. Basic operations are computed as follows.

Equality: Check that L1 and L2 have the same HNF [Coh93, § 2.4.3].
Sum: If L1 and L2 are lattices, concatenate their matrices L1|L2 and compute the HNF to obtain L1+L2.
Intersection: If L1 and L2 are lattices, compute their dual lattices L⋆1 and L⋆2; then L1 ∩ L2 is the dual of
L⋆1 + L⋆2.

Multiplication: If L1 and L2 are lattices, their product L1L2 is computed, e.g., by writing the right multi-
plication matrices A1, . . . , A4 of a basis α1, . . . , α4 of L2, and then computing the sum

A1L1 +A2L1 +A3L1 +A4L1.

Containment: Given an element α ∈ Bp,∞ and a lattice L, checking whether α ∈ L is done by solving a
linear system LX = α and verifying that X has integer entries.

Inclusion: Checking whether a lattice L1 is included in a lattice L2, can be done either by checking con-
tainment of all 4 basis vectors of L1 in L2, or by testing equality of L1 + L2 and L2.

Index: When L1 ⊂ L2, the index of L1 in L2, denoted by [L2 : L1] is the order of the finite quotient group
L2/L1. This value equals |det(L1)/det(L2)| and can be computed using the determinant algorithm for
dimension 4 from [Ebe08].

Basis reduction: We say a lattice is reduced when its basis is reduced according to the definition of Sec-
tion 3.1.4.1 instantiated with the bilinear form of Eq. (9). We use the L2 algorithm to compute a reduced
basis. The Gram matrix of the basis (1, i, j, ij) is the diagonal matrix G of entries (2, 2, 2p, 2p), and the
Gram matrix of any other basis is computed as G′ = MtGM if M is the change-of-basis matrix.

3.1.6. Quaternion orders and ideals

An order is a lattice of Bp,∞ that is also a subring. Elements of an order O are said to be integral, since they have
reduced norm and trace in Z. An order is called maximal when it is not contained in any other larger order.

The quaternion algebra used in SQIsign contains a maximal order with basis (1, i, i+j2 , 1+ij2 ) which will be
denoted by O0 in the remainder of this section. O0 contains a (non-maximal) suborder of basis (1, i, j, ij).

Let O be an order. A left (right) integral ideal of O, henceforth only called a left (right) ideal of O, is a
sublattice of O, closed under multiplication by O on the left (right). The left order of an ideal is defined as
OL(I) = {α ∈ Bp,∞ | αI ⊂ I} and similarly for the right order OR(I). In this case, I is clearly a left ideal of
OL(I). An ideal with left order OL and right order OR is called a connecting ideal of OL and OR. The norm of

2In practice the reference implementation takes common denominators and represents L as an integer matrix M and a common denomi-
nator r, so that L = M/r. This can be considered as an implementation detail.
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an ideal I , denoted by nrd(I), is the greatest common divisor of the norms of its elements; it is an integer equal to√
[OL(I) : I] =

√
[OR(I) : I]. Any ideal can be written as I = OL(I)α +OL(I) nrd(I) for some α ∈ OL(I),

and similarly for OR(I). We simplify this notation by writing Oα+ON = O⟨α,N⟩ for any order O.
The product IJ of ideals I and J satisfying OR(I) = OL(J) is the product of I and J as lattices. It follows

that IJ is also an (integral) ideal and OL(IJ) = OL(I) and OR(IJ) = OR(J). The ideal norm is multiplicative
with respect to ideal products.

We define an equivalence on orders by conjugacy and on left O-ideals by right scalar multiplication. Two
orders O1 and O2 are equivalent if there is an element β ∈ B⋆p,∞ such that βO1 = O2β. Two left O-ideals I and
J are equivalent if there exists β ∈ B⋆p,∞, such that I = Jβ. If the latter holds, then it follows that OR(I) and
OR(J) are equivalent since βOR(I) = OR(J)β.

3.1.6.1. Basic operations on ideals. We represent ideals by their lattices and compute equality, membership,
sum, intersection and multiplication like for them. We can use these elementary operations to compute the ideal
O⟨α,N⟩: use lattice multiplication to compute Oα and ON , then lattice sum to compute O⟨α,N⟩. Inversely,
a quaternion α ∈ I such that I = O⟨α,N⟩ can be found by taking arbitrary elements in I until one such that
gcd(nrd(α), N2) = N is found. This method is used in the reference implementation and detailed in Algo-
rithm 3.8.

Ideal inverse: Since all ideals in SQIsign are connecting maximal orders, they have inverses. The inverse
of such an ideal I is I−1 = 1

nrd(I) Ī where Ī is the lattice of conjugates of elements in I . I−1 is not an
ideal, but a rank-4 lattice, and for lattice multiplication, II−1 = OL(I) and I−1I = OR(I).

The left and right order of an ideal: Since all ideals in SQIsign are ideals connecting maximal orders,
the left and right orders of an ideal I can be computed using its inverse, since OL(I) = II−1 and
OR(I) = I−1I .

Computing a connecting ideal: Given two orders OL and OR, we compute a connecting ideal as

I = NOLOR,
where N is the square root of the index of OL ∩ OR in OL, or, alternatively, a common denominator of
the lattice OLOR.

Pullback and pushforward of ideals: We recall two definitions from [DKL+20, Lemma 3]. Given two
ideals I, J , such that OR(J) = OL(I) and having coprime norm, we define the pullback ideal to be the
OL(J)-ideal

[J ]∗I = JI + nrd(I)OL(J).
Similarily, when I, J are two left O-ideals of coprime norm, we define the pushforward ideal to be the
left OR(J)-ideal

[J ]∗I = J−1(J ∩ I).
It is readily verified that [J ]∗([J ]∗I) = I . The motivation for these definitions comes from the corre-
spondence between ideals and isogenies (see Section 3.2), where the corresponding definitions are more
natural.

3.1.6.2. Finding random ideals. SQIsign requires to compute two different kinds of random ideals:
(1) An ideal J which is equivalent to a given ideal I as left OL(I)-ideal and has norm nrd(I) prime and

rather small. J is sampled randomly among such ideals of small norm. This is done by Algorithm 3.9.
The distribution of the output J among all such ideals does not matter for the security of the scheme as
this algorithm will only be used to compress the secret key and commitment ideal representations.

(2) A left ideal J ′ of O0 of norm nrd(J ′) equal to a given integer n of sufficient size. J ′ must be sampled
uniformly at random among all such ideals. This is described in Algorithm 3.10.

We now describe these algorithms in more detail.

RandomEquivalentPrimeIdeal. To be more precise, given an integral ideal I , RandomEquivalentPrimeIdeal finds
an equivalent ideal J (i.e., I = Jα, where α ∈ B⋆p,∞) with different (i.e., prime and bounded) norm. To do so, it
employs the surjection

χI(α) = I
α

nrd(I)

from I\{0} to the set of ideals J equivalent to I .
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Algorithm 3.8 IdealGenerator(I)

Input: I , an ideal.
Output: γ primitive in I such that its norm NI and γ generate I as ideal of its left or right order.

1: n← 0
2: while true do
3: n← n+ 1
4: for a from − n up to n do
5: for b from − n+ |a| up to n− |a| do
6: for c from − n+ |a|+ |b| up to n− |a| − |b| do
7: d← n− |a| − |b| − |c|
8: if gcd(a, b, c, d) = 1 then

// The quaternion γ has a denominator that divides the ideal’s denominator
9: γ ← The quaternion of coordinates a, b, c, d in the basis in HNF of I

10: q = nrd(γ)/NI
11: if gcd(q,NI) = 1 then
12: return γ

The algorithm samples constants ci and constructs β =
∑4
i=1 ciαi, where (α1, . . . , α4) is a reduced basis of

I , before outputting J = χI(β) if the norm of J is prime. Heuristically, we can expect the norm of the output ideal
to be ≈ √p which should be much smaller than the norm of the input in SQIsign.

Algorithm 3.9 RandomEquivalentPrimeIdeal(I)

Input: I , a left O-ideal.
Output: J ∼ I of small prime norm, or raise an exception if unsuccessful.

1: Initialize counter← 0
2: Compute a LLL-reduced basis α1, α2, α3, α4 of I
3: while counter < (2 · QUAT_equiv_bound_coeff+ 1)4 do
4: counter← counter+ 1
5: Sample c1, c2, c3, c4 uniformly at random from [−b, . . . , b], for bound b = QUAT_equiv_bound_coeff
6: β ←

∑4
i=1 ciαi

7: J ← χI(β)
8: if nrd(J) is prime then
9: return J

10: raise Exception: (“RandomEquivalentPrimeIdeal failed”)

RandomIdealGivenNorm. RandomIdealGivenNorm first usesGeneralizedRepresentInteger described below to find
an element γ ofO0 of norm a multiple of the given integerN (N cannot be a multiple of p). IfGeneralizedRepresentInteger
fails, it propagates the error. It then multiplies this quaternion with a uniformly random quaternion β in O0/NO0

of norm coprime to N . The result γβ still has norm divisible by N . The left O0-ideal generated by N and γβ is
then returned by the algorithm.

In order to use GeneralizedRepresentInteger, it is needed to compute a multiple of N coprime to p, with few
prime factors, and of size at least p · QUAT_repres_bound_input. Therefore RandomIdealGivenNorm needs
first to find a prime distinct from p but of similar size. In SQIsign, the smallest prime of the same bit size as p is
precomputed and used. This primem is multiplied toN to create a suitable input for GeneralizedRepresentInteger.

In case N is known to be prime, RandomIdealGivenNorm should be called with the parameter prime set to
true. In this case, the sampling doesn’t use GeneralizedRepresentInteger but instead samples a random quaternion
of trace zero and norm n with −n square modulo N .

3.1.7. Solving norm equations

An important part of both the key generation and signing procedure in SQIsign, is the ability to solve norm equa-
tions in special quaternion orders, sometimes with some additional constraints. Throughout this section, we con-
sider special extremal maximal orders. These are maximal orders that contain j and a distinguished quadratic
subring R of small discriminant, such that R and jR are orthogonal.
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Algorithm 3.10 RandomIdealGivenNorm(N, prime)

Input: A positive integer N not multiple of p which is the norm of some left O0 ideal.
Input: A boolean prime indicating whether N is prime.
Input: A fixed parameter m = QUAT_prime_cofactor which is prime, approximately as large as p and larger

than N but distinct from both.
Output: A random left ideal J ′ of O0 of norm N , or raise an exception.

1: found← false
2: if prime then
3: while not found do
4: g1, g2, g3 ← independent uniformly random integers in [0, N − 1]
5: γ ← g1i+ g2j + g3ij
6: found← (1 = Legendre(−nrd(γ), N))
7: if found then
8: γ ← γ +ModularSQRT(−nrd(γ), N)

9: else
10: γ ← GeneralizedRepresentInteger(mN, i,O0, false) // This might raise an exception
11: while not found do
12: x, y, z, w uniformly randomly selected integers in [1, N ]
13: β ← x+ yi+ zj + wij
14: found← (gcd(nrd(β), N) = 1)

15: J ′ ← the left O0-ideal generated by γβ and N
16: return J ′

3.1.7.1. Cornacchia’s algorithm. Cornacchia’s algorithm [Cor08] allows us to efficiently find integer solutions
for equations of the form x2 + qy2 = m with q,m positive integers, provided we know the factorization of m. For
prime m, a pseudocode following [MN90] is given in Algorithm 3.11.

Algorithm 3.11 Cornacchia(q,m)

Input: q,m ∈ Z with m prime and 0 ≤ q ≤ m.
Output: x, y ∈ Z such that x2 + qy2 = m if such x, y exist, non-existence indicator ⊥ otherwise.

1: if −q is not a square modulo m then
2: return ⊥
3: if m = 2 then
4: if q = 1 then
5: return 1, 1
6: else
7: return ⊥

// Now m is an odd prime and −q square modulo m

8: r ← ModularSQRT(−q mod m,m)
9: s← q

10: r, s← s, (r mod s)
11: r, s← s, (r mod s)
12: while s2 < m ≤ r2 do
13: r, s← s, (r mod s)

14: x, y ← s, (m− s2)/q
15: if x2 + qy2 = m then
16: return r, s
17: else
18: return ⊥

3.1.7.2. Representing integers by a special extremal order. Cornacchia’s algorithm efficiently solves norm
equations of the form x2 + ny2 = m. This makes it straightforward to solve norm equations in special extremal
orders, i.e., orders containing a suborder of the form Z[ω]+ j Z[ω], where j2 = −p and Z[ω] is a quadratic subring
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of Bp,∞ of small discriminant. The generator ω is chosen as
√
−q for small positive integer q. The norm of an

element of coefficients (x, y, z, t) in basis 1, ω, j, ωj is then
F (x, y, z, t) = x2 + qy2 + p(z2 + qt2).

The general idea for solving equations of the form F (x, y, z, t) =M for some target normm is to sample z, t, and
then try to solve for x, y such that x2 + qy2 =M − p(z2 + qt2) using Cornacchia.

For example, O0 is a special extremal maximal order with q = 1 and ω = i. Solving norm equations in its
suborder Z[i] + j Z[i] can therefore be done as described above. An extension of that algorithm was introduced
in [DLLW23, §6], which samples solutions in the whole order O0. We further generalize this algorithm to other
special extremal maximal orders of Bp,∞ in GeneralizedRepresentInteger.

When called on O0 with the boolean isogenyCond set to true, GeneralizedRepresentInteger enforces an
additional modular condition on the solution, as required by FixedDegreeIsogeny for constructing two-dimensional
isogenies.

The algorithm GeneralizedRepresentInteger only works on odd input norms M and is likely to fail if M <
pqQUAT_repres_bound_input, and less efficient if q is too large. See Chapter 9 for more details on heuristics
and failures.

Algorithm 3.12 GeneralizedRepresentInteger(M,ω,O, isogenyCond)
Input: M ∈ Z odd such that M > p.
Input: ω ∈ Bp,∞ such that such that q = −ω2 is a positive integer and q = 1 mod 4.
Input: O a special extremal maximal order containing the suborder Z[ω] + j Z[ω] ⊂ O, with j from the standard

basis of Bp,∞.
Input: isogenyCond boolean flag only relevant for −ω2 = 1, enforces a modular condition needed by

FixedDegreeIsogeny.
Output: γ ∈ O with nrd(γ) equal to M , or raises an exception.

1: Initialize q ← −ω2, counter← 0, bound←
⌈

4M
p
√
q

⌉
, and found← false

2: while (not found) and (counter < bound) do
3: counter← counter+ 1

4: Sample z uniformly from [1, . . . ,m] for m =
⌊√

4M
p − q

⌋
5: Sample t uniformly from [−m′, . . . ,m′] for m′ =

⌊√
4M−pz2

qp

⌋
6: Set M ′ ← 4M − p(z2 + qt2)
7: if M ′ is a prime then
8: res← Cornacchia(q,M ′)
9: found← (res ̸= ⊥)

10: if found then
11: x, y ← res

12: if found and isogenyCond and q = 1 then
13: if x ̸≡ t mod 2 then
14: Swap x and y
15: found← (x− t ≡ 2 mod 4) and (y − z ≡ 2 mod 4)

16: if found then
17: γ ← (x+ ωy + jz + ωjt)
18: Set d to be the biggest scalar such that γ/d ∈ O
19: found← (d = 2)

20: if found then
21: return γ/d
22: raise Exception: (“GeneralizedRepresentInteger failed”)

3.2. Converting between ideals and isogenies
In this section, we describe the algorithm for converting between ideals and isogenies. These operations constitute
the computationally most expensive part of the signing procedure in SQIsign.



32 3. BASICS OF QUATERNIONS

3.2.1. The correspondence between ideals and isogenies

Given an elliptic curve E, an endomorphism of E is an isogeny φ : E → E. The collection of all endomorphisms
of E is called the endomorphism ring of E, written End(E). If we now let E be a supersingular elliptic curve
over Fp2 , End(E) is isomorphic to a maximal order O in the quaternion algebra Bp,∞. Fixing an isomorphism
O ∼= End(E), an element α ∈ O corresponds to an endomorphism ofE, and we write, by slight abuse of notation,
α(P ) for P ∈ E to denote the image of α under a (fixed) isomorphism evaluated at P ∈ E, and similarly, we write
kerα to denote the kernel of the image of α.

Given the curve E, the order O, and an isomorphism O ∼= End(E), we obtain a bijection between:
• left ideals of O of norm coprime to p, and
• finite subgroups of E (kernels of separable isogenies from E).

Explicitly, this correspondence is given by sending an ideal I to the finite subgroup

E[I] := {P ∈ E | α(P ) = 0E ,∀α ∈ I},

which, when I is written as I = O⟨α,N⟩, simplifies to

E[I] := kerα ∩ E[N ]

Given such an I , we denote the corresponding separable isogeny with kernel E[I] by φI . Reciprocally, given a
separable isogeny φ from E, we denote the corresponding ideal by Iφ, which can explicitly be given as

Iφ = {α ∈ O | α(P ) = 0E ,∀P ∈ kerφ}

In SQIsign, we will always use a prime p ≡ 3 (mod 4). In this case, the curve

E0 : y2 = x3 + x

is supersingular, with endomorphism ring isomorphic to

O0 = Z ⊕ iZ ⊕ i+ j

2
Z ⊕ 1 + k

2
Z

The isomorphism is given by sending j to the Frobenius endomorphism (x, y) → (xp, yp), and i to the automor-
phism (x, y)→ (−x,

√
−1y) onE0. For the remainder of this document, we fix this choice ofE0,O0 and isomor-

phism End(E0) ∼= O0, whileO refers to an arbitrary maximal order (not necessarily distinct fromO0). Whenever
we are given an isogeny φ : E0 → E and the corresponding (O0,O)-ideal I , the isomorphism O0

∼= End(E0)
naturally induces an isomorphismO ∼= End(E). In the following algorithms, we will either work withE0, or with
some E for which we know such a pair (φ, I). So we do not explicitly mention which isomorphism we use for the
correspondence: we use the implicitly defined isomorphism O ∼= End(E).

3.2.1.1. Precomputed data. In the following algorithms, we will use p of the form c · 2f − 1, where c is a small
integer. Let (P0, Q0) be a basis of E0[2

f ], where the actions of i, i+j2 , 1+k2 are precomputed.
For an index t, let (Ot, Jt, Et, (Pt, Qt), (Mt,1, . . . ,Mt,4)) be a tuple of the following form:

• Ot = bt,1 Z ⊕ bt,2 Z ⊕ bt,3 Z ⊕ bt,4 Z is a maximal order in Bp,∞ containing a subring R isomorphic
to Z[
√
−qt ] for a suitable small integer qt, such that R+ jR is a rank-4 submodule of Ot,

• Jt is an (O0,Ot)-ideal of odd norm,
• Et is a supersingular elliptic curve over Fp such that End(Et) ∼= Ot,
• (Pt, Qt) is the basis of Et[2f ] such that φJt(P0) = Pt, φJt(Q0) = Qt,
• Mt,u is the matrix in M2(Z /2f Z) representing the action of bt,u on Et[2f ] with respect to the basis
(Pt, Qt) for u ∈ {1, . . . 4}.

For α = x1bt,1 + x2bt,2 + x3bt,3 + x4bt,4 ∈ Ot, we can compute the action of α on Et[2f ] by computing the
matrix Mα = x1Mt,1 + x2Mt,2 + x3Mt,3 + x4Mt,4.

We define q0 = 1 and J0 = O0 andM0,1, . . . ,M0,4 as the same as the above for the integral basis (1, i, i+j2 , 1+k2 )
of O0. We precompute distinct tuples (Ot, Jt, Et, (Pt, Qt), (Mt,1, . . . ,Mt,4)) for t = 0, 1, . . . , norders, and use
them in the following algorithms.

The precomputed tuples may be generated as follows: First, generate the tuple associated to O0. Then, for all
t = 1, . . . , norders, look for the smallest prime qt > qt−1 with qt ≡ 1 (mod 4) such that j2 = −p, i2 = −qt
defines a quaternion algebra of discriminant p. The order Ot is obtained as

Ot = Z+iZ+
1 + j

2
Z+

(r + j)i

2qt
Z
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where r ∈ Z is the smallest positive integer such that r2 ≡ −p (mod qt); this is exactly the orderO′(r) in [Ibu82].
Now, embed Ot in O0 ⊗ Q via the isomorphism from [ESPV23, Lemma 10]. Find an element γ of minimal
odd relative norm in the connecting ideal O0Ot to compute the integral odd (O0,Ot)-ideal Jt := O0Otγ−1.
Compute the associated isogeny φJt : E0 → Et and the images Pt = φJt(P0), Qt = φJt(Q0) using an ideal-to-
isogeny algorithm such as Algorithm 3.13. The matricesMt,u can be computed by finding an explicit isomorphism
Ot

∼−→ End(Et) using the methods of [ESPV23, § 3.1], then evaluating the endomorphisms corresponding to bt,u
on the basis (Pt, Qt) of Et[2f ] and solving a few two-dimensional DLPs.

3.2.2. Representation of isogenies between elliptic curves via (2, 2)-isogenies

Let d1, d2, e be positive integers such that gcd(d1, d2) = 1 and d1+d2 = 2e. Consider the following commutative
diagram of isogenies between elliptic curves:

E1
φ1 //

φ2

��

ψ

  

E2

φ′
2

��
E3

φ′
1 // E4

where deg(φ1) = deg(φ′
1) = d1 and deg(φ2) = deg(φ′

2) = d2. Then the isogeny Φ : E1 × E4 → E2 × E3

defined by

(
φ1 φ̂′

2

−φ2 φ̂′
1

)
is a (2e, 2e)-isogeny with kernel {([d1]P,ψ(P )) | P ∈ E1[2

e]}.

GivenE1, E4, d1, d2, e, and the restriction ofψ onE1[2
e], we can compute an isogeny ι◦Φ by Isogeny22Chain

for an isomorphism ι between products of elliptic curves. Suppose that E2 ̸= E3, thus e ≥ 2. Then, for P ∈ E1,
the first component of ι ◦ Φ(P, 0E4

) is φ1(P ) or φ2(P ) (up to post-composition with an isomorphism). We can
determine which one is the case by computing the Weil pairing as follows. Let (P,Q) be a basis of E1[2

e′ ] for
e′ ≥ 2 and (P1, P2) = ι ◦ Φ(P, 0E4

), (Q1, Q2) = ι ◦ Φ(Q, 0E4
). Then, we have e2e′ (P1, Q1) = e2e′ (P,Q)d1 if

P1 = φ1(P ), and e2e′ (P1, Q1) = e2e′ (P,Q)d2 if P1 = φ2(P ). Since d1 ≡ −d2 (mod 2e) and f ≥ 2, we have
d1 ̸≡ d2 (mod 2e

′
). Therefore, we can determine which is the case.

3.2.3. Converting O0-ideals to isogenies

Let I be a left O0-ideal and EI be the codomain of φI . Given I , we can compute EI and the images of P0, Q0

under φI by the following algorithm, which is summarized in IdealToIsogeny.
First, we compute positive integers u, v, e, indices s, t, and β1 ∈ JsI, β2 ∈ JtI such that

ud1 + vd2 = 2e, and gcd(ud1, vd2) = 1, and e ≤ f,

where d1 = nrd(β1)/ nrd(JsI), d2 = nrd(β2)/nrd(JtI). This is accomplished by SuitableIdeals (see Sec-
tion 3.2.5).

Then, we set I1 = χJsI(β1) and I2 = χJtI(β2), and we obtain that

β1 = φ̂I1 ◦ φI ◦ φ̂Js , β2 = φ̂I2 ◦ φI ◦ φ̂Jt .

This implies that β2 ◦φJt ◦ φ̂Js ◦ β1 = [nrd(I) nrd(Js) nrd(Jt)]φ̂I2 ◦φI1 , which means that we can compute the
images of Ps, Qs under φ̂I2 ◦ φI1 by

φ̂I2 ◦ φI1
(
Ps
Qs

)
=

[
1

nrd(I) nrd(Jt)

]
Mβ1

Mβ2

(
Pt
Qt

)
.

Next, we compute isogenies
φu : Es → Eu, φv : Et → Ev

of degrees u and v respectively, using FixedDegreeIsogeny (see Section 3.2.4), which gives us the diagram in
Figure 2. As explained in Section 3.2.2, we can obtain EI and φI1 ◦ φ̂u by computing (2e, 2e)-isogeny with kernel

{([ud1]P,φv ◦ φ̂I2 ◦ φI1 ◦ φ̂u(P )) | P ∈ Eu[2e]}.

Since φu induces a bijection from Es[2
e] to Eu[2e], the kernel is equal to

{([d1]φu(P ), φv ◦ φ̂I2 ◦ φI1(P )) | P ∈ Ei[2e]}.
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Eu Es EI

Et

Ev

φu φI1

φI2

φv

Figure 2. The isogenies in the algorithm IdealToIsogeny.

Finally, we obtain the images φI(P0), φI(Q0) as

φI(P0) = [1/ nrd(I1)]φI1 ◦ β1(Ps), φI(Q0) = [1/ nrd(I1)]φI1 ◦ β1(Qs).

Algorithm 3.13 IdealToIsogeny(I)

Input: A left O0-ideal I .
Output: The codomain EI of φI , φI(P0), and φI(Q0).

1: u, v, e, s, t, β1, β2 ← SuitableIdeals(I)
2: d1 ← nrd(β1)/ nrd(JsI)
3: d2 ← nrd(β2)/ nrd(JtI) // ud1 + vd2 = 2e, with gcd(ud1, vd2) = 1

4: Eu, φu(Ps), φu(Qs)← FixedDegreeIsogeny(s, u) // φu : Es → Eu is an isogeny of degree u
5: Ev, φv(Pt), φv(Qt)← FixedDegreeIsogeny(t, v) // φv : Et → Ev is an isogeny of degree v

6: [P, Q]T ←
[

1
nrd(I) nrd(Jt)

]
Mβ1

Mβ2
[φv(Pt), φv(Qt)]

T

7: KP ← [2f−e]
(
[d1]φu(Ps), P

)
8: KQ ← [2f−e]

(
[d1]φu(Qs), Q

)
9: E × E′, [(P, P ′), (Q,Q′)]← Isogeny22Chain(KP ,KQ, [(φu(Ps), 0Ev

), (φu(Qs), 0Ev
)])

10: if e2f (P,Q) = e2f (Ps, Qs)
u2d1 then // We identify the right curve EI by ensuring it is d1-isogeneous to E0

11: EI ← E, PI ← P , and QI ← Q
12: else
13: EI ← E′, PI ← P ′, and QI ← Q′

14: [PI , QI ]
T ←

[
1
ud1

]
Mβ1 [PI , QI ]

T

15: return EI , (PI , QI)

Ideals of even norm. In SQIsign, we also need to consider ideals of even norm. Specifically, we need to handle
ideals of norm n2e for an odd integer n and e ≤ f . Let I be a leftO0-ideal of norm n2e. Then we can decompose
I as I = I1I2 where I1 is a left O0-ideal of norm n and I2 is a left OR(I1)-ideal of norm 2e. By IdealToIsogeny,
we can compute the codomain EI1 of φI1 and the images of P0, Q0 under φI1 . Let a, b ∈ Z be integers such that
the kernel of the isogeny corresponding to the pullback [I1]

∗I2 is generated by

[a2f−e]P0 + [b2f−e]Q0.

Then the kernel of φI2 is generated by the image of this point under φI1 . The integers a, b can be computed by
IdealToKernel (Algorithm 3.14).

Algorithm 3.14 IdealToKernel(I)

Input: A left O0-ideal I of norm 2e for e ≤ f .
Output: Integers a, b such that kerφI is generated by [a2f−e]P0 + [b2f−e]Q0.

1: Compute α ∈ O0 such that I = O0⟨α, 2e⟩
2: Compute [a, b]T in the right kernel of Mα mod 2e

3: return a, b
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Et E

Et

θ

φ

ψ

Figure 3. The isogenies in the algorithm FixedDegreeIsogeny.

3.2.4. Evaluating an arbitrary fixed odd degree isogeny from a precomputed curve

For an index t and a given positive odd integeru such thatu < 2f−2, we can compute the codomainE of au-isogeny
φ : Et → E and the images ofPt, Qt underφ by the following algorithm, which is depicted inFixedDegreeIsogeny.

The overview of the algorithm is as follows. Let eFDI be the smallest value between f − 2 and ⌈log2(p) −
log2(u)⌉ + QUAT_repres_bound_input. First, we compute an endomorphism θ of Ei of norm u(2eFDI − u) by
GeneralizedRepresentInteger. If the computation succeeds, then the returned endomorphism θ factors as θ = φ◦ψ
for some u-isogeny φ : Et → E and (2eFDI − u)-isogeny ψ : E → Et. Next, we compute the (2eFDI , 2eFDI)-isogeny
with kernel {([u]P, θ(P )) | P ∈ Et[2eFDI ]} and obtain the codomain E of φ and the images of Pt, Qt under φ.
The diagram in Figure 3 shows the isogenies in the algorithm FixedDegreeIsogeny.

Algorithm 3.15 FixedDegreeIsogeny(t, u)

Input: An index t and a positive odd integer u < 2f−2.
Output: The curve E, φ(Pt), and φ(Qt), where φ : Et → E is a u-isogeny.

1: eFDI ← min(f − 2, ⌈log2(p)− log2(u)⌉+ QUAT_repres_bound_input)
2: θ ← GeneralizedRepresentInteger(u(2eFDI − u),

√
−qt,Ot, true)

3: [θ(Pt), θ(Qt)]
T ←Mθ[Pt, Qt]

T

4: K1 ← [2f−2−eFDI ]([u]Pt, θ(Pt))
5: K2 ← [2f−2−eFDI ]([u]Qt, θ(Qt))
6: E × E′, [(P, P ′), (Q,Q′)]← Isogeny22ChainWithTorsion(K1,K2, [(Pt, 0Et

), (Qt, 0Et
)])

7: if e2f (P,Q) ̸= e2f (Pt, Qt)
u then

8: E ← E′, P ← P ′, and Q← Q′

9: return E,P,Q

We remark that for Algorithm 3.15, since we are using the isogeny algorithm Isogeny22ChainWithTorsion
that takes extra torsion as input, then using the implementation of Algorithm 8.48 the codomain at the end is set up
in such a way that E is always the correct curve in line 6, and the pairing check in line 7–8 can be skipped.

3.2.5. Finding suitable ideals

The algorithm SuitableIdeals finds positive integers u, v, e, indices s, t, and ideals I1, I2 in the diagram in Figure 2.
The outline of the algorithm is as follows. First, we find βs ∈ JsI and βt ∈ JtI such that d1 = nrd(β1)/nrd(JsI)
and d2 = nrd(β2)/ nrd(JtI) are odd, coprime, and satisfy d1, d2 < 2f . Next, we compute integers u and v such
that ud1 + vd2 = 2f . This can be achieved by setting u← 2fd−1

1 (mod d2) and v ← (2f − ud1)/d2. If v > 0,
the dyadic valuations of u and v are equal, and u and v do not share any odd common divisor, as ud1 + vd2 = 2f .
Consequently, the greatest odd divisors of u and v satisfy the required conditions.

3.2.6. Converting isogenies to ideals

Translating isogenies to their corresponding ideals is comparatively more straightforward. To find the ideal cor-
responding to the isogeny generated by a point P of order D is to create a basis ⟨P, θ(P )⟩ = E[D] for some
endomorphism θ (often called a distortion map), and decomposing η(P ) (where η is orthogonal to θ) along this
basis, i.e., solving

[a]P + [b]θ(P ) = η(P ),

which means that α = a+ bθ − η sends the point P to the identity, and hence I = O⟨α,D⟩ is the corresponding
ideal.
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Algorithm 3.16 SuitableIdeals(I)

Input: A left O0-ideal I .
Output: Positive integers u, v, e, indices s, t, and β1 ∈ JsI, β2 ∈ JtI such that ud1+vd2 = 2e, gcd(ud1, vd2) =

1, and e ≤ f , where d1 = nrd(β1)/nrd(JsI), d2 = nrd(β2)/nrd(JtI).
1: for t from 0 up to norders do
2: Let (b1, . . . , b4) be a basis of JtI
3: Compute the Gram matrix G = (⟨br, bs⟩)1≤r,s≤4

4: (α1, . . . , α4), _← L2δ,η((b1, . . . , b4),G)

5: Lt ←
[∑4

s=1 xsαs

∣∣∣ (x1, . . . , x4) ∈ [−m, . . . ,m]
]

for m = FINDUV_box_size
6: Sort Lt by increasing norm.
7: for (s, t) ∈ [0, . . . , norders]

2 do // by increasing lexicographic order
8: for (β1, β2) ∈ Ls × Lt do // by increasing lexicographic order
9: d1 ← nrd(β1)/ nrd(JsI) and d2 ← nrd(β2)/ nrd(JtI)

10: if d1 ≡ 1 (mod 2) and d2 ≡ 1 (mod 2) and gcd(d1, d2) = 1 then
11: u← 2fd−1

1 (mod d2)
12: v ← (2f − ud1)/d2
13: if v > 0 then
14: e← DyadicValuation(u)
15: u← u/2e, v ← v/2e, and e← f − e
16: return u, v, e, s, t, β1, β2
17: raise Exception(“SuitableIdeals failed”)

Using a decomposition along a fixed basis. In SQIsign, we only ever translate points on E0 of order 2f to their
corresponding ideals, hence we fix the choice θ = j + 1+k

2 and η = i. Further, instead of taking as input a kernel
pointP ,KernelDecomposedToIdeal (Algorithm 3.17) takes in the decomposition ofP along the fixed precomputed
basis (P0, Q0), i.e., P = [a]P0+[b]Q0. By having again precomputed the action of θ and η on this basis, we obtain
the required ideal without requiring any discrete log computations.

Algorithm 3.17 KernelDecomposedToIdealD(c1, c2)

Input: c1, c2 ∈ Z defining a point [c1]P0 + [c2]Q0 on E0 of order 2f generating an isogeny φ.
Output: Iφ, a left O0-ideal.

1: [d1, d2]
T ←Mθ[c1, c2]

T

2: M←
(
c1 d1
c2 d2

)
3: [a, b]T ←M−1Mi[c1, c2]

T

4: I ← O0

〈
a+ b

(
j + 1+k

2

)
− i, 2f

〉
5: return I



CHAPTER 4

The Signature Scheme

This chapter provides a detailed explanation of the key generation, signing, and verification procedures in
SQIsign.

4.1. Σ protocols and the Fiat–Shamir Transform
The signature scheme SQIsign is constructed from a Σ protocol using the Fiat–Shamir transform. For complete-
ness, the relevant definitions are recalled. Such notions will be used to prove the security of SQIsign in Chapter 10.

Σ protocols. To begin, the definition of Σ protocol is introduced. In the context of SQIsign, Σ protocols will
always be commitment recoverable. Hence, the definitions below are tailored to this case.

Recall that a Σ protocol for an NP-language L is a public-coin three-move interactive proof system consisting
of two parties: a verifier and a prover. The prover is given a witness w for an element x ∈ L, their goal is to
convince the verifier that they know w.

Definition 4.1.1 (Σ protocol). AΣ protocolΠΣ for a family of relations {R}λ parameterized by security parameter
λ consists of PPT algorithms (P1,P2,V). Throughout this section, we assume that the prover algorithms P1 and
P2 share state (and hence avoid explicitly passing state between these algorithms). We also assume throughout that
the final verification algorithm V is deterministic. The protocol proceeds as follows:

(1) The prover, on input (x,w) ∈ R, returns a commitment com← P1(x,w), which is sent to the verifier.
(2) The verifier uniformly randomly samples a challenge string chl← {0, 1}λ and sends the challenge to the

prover.
(3) On receiving the challenge chl from the verifier, the prover runs resp← P2(chl) and returns the response

resp to the verifier.
(4) The verifier runs the verification algorithm V(x, chl, resp) and outputs com′.

We refer to the tuple (com, chl, resp) as a transcript of the Σ protocol. A transcript (com, chl, resp) is said
to be valid, or accepting, if V(x, chl, resp) = com. Certain desirable properties of a Σ protocol include: (1)
correctness, if a prover knows (x,w) ∈ R and behaves honestly, then the verifier will output the commitment
chosen by the prover; (2) special soundness, if a cheating prover only knows statement x and not a corresponding
witness w, they cannot force an honest verifier to output a valid commitment; (3) honest-verifier zero-knowledge,
no malicious verifier cannot extract additional knowledge from the prover. These are defined in more detail in
Chapter 10.

The Fiat-Shamir Transform. We now describe the standard transformation from a Σ protocol (P1,P2,V) with
a random instance generator Gen into a digital signature scheme Γ = (GenSig,Sign,Ver) via the Fiat–Shamir
transform [FS87]. The transformation uses a hash function H : {0, 1}∗ → {0, 1}λ (modeled as a random oracle)
and works as follows.

• GenSig(1
λ): Generate (x,w)← Gen(1λ). Output the secret key sk = (x,w) and the public key pk = x.

• Sign(sk,msg): On input the secret key sk = (x,w) and a message msg ∈ {0, 1}∗, sample

com← P1(x,w), chl = H(com∥msg), resp = P2(chl),

and output the signature σ = (chl, resp).
• Ver(pk,msg, σ): On input the public key pk = x, a message msg ∈ {0, 1}∗ and a signature σ =
(chl, resp), compute com′ = V (x, chl, resp). Return true if chl = H(com′∥msg), else output false.

37
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4.2. Parameters
The SQIsign algorithm works with several parameters and precomputed values: all algorithms implicitly take a
parameter set as input. For the specific values of such parameters, we refer the reader to Chapter 5. Hereafter, we
provide a list of these parameters, and in some cases also describe how they can be derived from other parame-
ters. Generally, the values and parameters can be divided in two categories: the parameters directly related to the
algorithms of SQIsign, and those that are related to some algorithmic building blocks. The former are treated in
Section 4.2.1, and the latter in Section 4.2.2. We assume that all the algorithms described below have access to the
parameter values.

4.2.1. Scheme parameters

The parameters and precomputed values of SQIsign include:
• The prime p = c · 2f − 1, where c is a small positive integer and f ≈ 2λ.
• The degree Dmix, used by the secret isogeny and the commitment isogeny, to guarantee stationary distri-

bution of the codomain curve. Concretely, Dmix is chosen as the smallest prime larger than 24λ.
• The upper bound Drsp for the degree of the response isogeny; for convenience, we also define ersp for its

2-logarithm, i.e., Drsp = 2ersp ; concretely ersp =
⌈
log2

(√
p
)⌉

.
• The degree Dchl of the challenge isogeny., which is defined as Dchl = 2f .
• The exponent echl = f − ersp defining the challenge space: challenges are integers 0 < chl < 2echl .
• A basis B0 = (P0, Q0) of E0[2

f ], deterministically generated by TorsionBasis0(Fp2).
• A hash function HASH, obtained by repeating SHAKE256 multiple times.

4.2.2. Algorithmic parameters

Several algorithmic building blocks (mostly algorithms of Chapter 3) used in SQIsign require some constants. The
choice of these constants can be critical in some cases as it determines the failure probability of these algorithms.
In particular, we will explain how to choose those constants to ensure that the failure probability is smaller than
2−64. Some justifications regarding these choices can be found in Chapter 9.

• QUAT_primality_num_iter is the number of Miller-Rabin tests used in to test pseudo-primality for the
equivalent ideal functionality. It should be such that 4−QUAT_primality_num_iter < 2−64 (this is a common
upper-bound on the probability of failure of repetitions of Miller Rabin test).

• FixedDegreeIsogeny calls to GeneralizedRepresentInteger with an input M = u(2eFDI − u). The ex-
ponent eFDI is chosen to ensure that the execution of GeneralizedRepresentInteger succeeds with good
probability. For this reason eFDI is computed from a constant QUAT_repres_bound_input computed
as follows:

QUAT_repres_bound_input =
⌈
log2

(
log1−1/(64·log2(p))

(2−64)
)⌉

• The bound QUAT_equiv_bound_coeff is computed as 21+⌊QUAT_repres_bound_input/4⌋

• The bound FINDUV_box_size is computed as 2 + ⌊(log2(p)− DyadicValuation(p+ 1))/4⌋.
• The number norders of alternate orders and the associated list of integers qt defining them are set for each

security level as follows:
NIST-I: norders = 6, (qt) = (5, 17, 37, 41, 53, 97);
NIST-III: norders = 7, (qt) = (5, 13, 17, 41, 73, 89, 97);
NIST-V: norders = 6, (qt) = (5, 37, 61, 97, 113, 149).

4.3. Key generation
The key generation algorithm SQIsign.KeyGen (Algorithm 4.1) produces a public key pk, which is a random curve
Epk and some basis hint hintpk, and a secret key sk, which is a representation of a secret isogeny φsk : E0 → Epk.
This isogeny can also be interpreted as a representation of the endomorphism ring End(Epk) of Epk.

For efficiency purposes, the secret key includes some additional data (technically not necessary to recover
End(Epk)) that will be useful to generate signatures. The secret key contains:

(1) The public key curve Epk.
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(2) The hint hintpk used to generate a deterministic basis on Epk.
(3) The secret ideal Isk corresponding to the secret isogeny φsk : E0 → Epk.
(4) The change-of-basis matrix Msk from (φsk(P0), φsk(Q0)) to Bpk.

More specifically, the key generation proceeds by sampling a random secret left O0-ideal Isk of prime norm Dmix
via RandomIdealGivenNorm. To obtain an ideal of smaller norm, the ideal Isk is updated to be the output of the al-
gorithmRandomEquivalentPrimeIdeal. Then, using IdealToIsogeny, the corresponding secret isogenyφsk : E0 →
Epk is evaluated on the 2f -torsion to obtain the points φsk(P0) and φsk(Q0). Since RandomEquivalentPrimeIdeal
and IdealToIsogeny may fail, it might be necessary to rerun them on a different input: if any of the three algorithms
fails, a new secret ideal Isk is sampled using fresh randomness.

To avoid recomputing φsk during SQIsign.Sign, the information (φsk(P0), φsk(Q0)) is stored in the secret
key sk. We now briefly explain how this is done. First, we generate a deterministic basis Bpk = (Ppk, Qpk) of
Epk[2

f ]. Then, we compute the change-of-basis matrix Msk =
(
a b
c d

)
such that

Msk ·
(
φsk(P0)
φsk(Q0)

)
=

(
[a]φsk(P0) + [b]φsk(Q0)
[c]φsk(P0) + [d]φsk(Q0)

)
=

(
Ppk

Qpk

)
.

The matrix Msk is part of the secret key sk. Also, as we generate the deterministic basisBpk, we save a hint hintpk,
which we append to the public key pk. The hint hintpk is then used to recompute Bpk faster during SQIsign.Verify
(Algorithm 4.9). We refer to Section 2.2.3 for more details about the generation of torsion bases with hints.

Algorithm 4.1 SQIsign.KeyGen( )

Output: Secret key sk and public key pk.
1: while true do
2: Isk ← RandomIdealGivenNorm(Dmix, true)
3: try
4: Isk ← RandomEquivalentPrimeIdeal(Isk)
5: Epk, φsk(P0), φsk(Q0)← IdealToIsogeny(Isk)
6: except
7: continue
8: Ppk, Qpk, hintpk ← TorsionBasisToHint(Epk)
9: Msk ← ChangeOfBasis2f (Epk, (φsk(P0), φsk(Q0)), (Ppk, Qpk))

10: pk← (Epk, hintpk)
11: sk←

(
Epk, hintpk, Isk,Msk

)
12: return sk, pk

4.4. Signing
Following the framework in Section 4.1, the SQIsign signing algorithm can naturally be divided into three stages:
commitment phase, challenge phase, and the response phase. This signing procedure SQIsign.Sign (Algorithm 4.2)
takes as input a secret key sk and message msg. At a high level, the commitment phase consists of computing a
random isogeny φcom : E0 → Ecom and the ideal Icom. During the challenge phase, the commitment Ecom and the
message msg are hashed to generate a challenge chl. Such a challenge defines a challenge isogenyφchl : Epk → Echl

whose corresponding ideal is denoted by Ichl. Finally, the response phase consists of computing an equivalent ideal
Irsp ∼ Icom ·Isk ·Ichl and translating Irsp to its corresponding isogeny φrsp : Ecom → Echl. The output of the signing
procedure is a signature σ containing the challenge chl and some additional data describing the response isogeny
φrsp : Ecom → Echl. Below, we give more detail on each phase of the signing procedure.

4.4.1. Commitment

The commitment starts by sampling a random commitment ideal Icom of norm Dmix via RandomIdealGivenNorm.
Such an ideal is then randomized via RandomEquivalentPrimeIdeal. Then, the isogeny φcom : E0 → Ecom

corresponding to ideal Icom is computed using IdealToIsogeny. Additionally, the isogeny φcom : E0 → Ecom

is evaluated on the basis B0 = (P0, Q0). Analogously to SQIsign.KeyGen, RandomEquivalentPrimeIdeal and
IdealToIsogeny may fail. Hence, it might be necessary to restart the signing procedure using a different ideal,
sampled using new randomness.
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Algorithm 4.2 SQIsign.Sign(sk,msg)

Input: Secret signing key sk and message msg ∈ {0, 1}∗.
Output: Signature σ.

1: Parse sk as
(
Epk, hintpk, Isk,Msk

)
2: Ppk, Qpk ← TorsionBasisFromHint(Epk, hintpk)
3: while true do

// Commitment
4: Icom ← RandomIdealGivenNorm(Dmix, true)
5: try
6: Icom ← RandomEquivalentPrimeIdeal(Icom)
7: Ecom, Pcom, Qcom ← IdealToIsogeny(Icom)
8: except
9: continue

// Challenge
10: chl← HASH(pk || j(Ecom) || msg) // See Section 4.6 for the binary encoding of elements in Fp2

// Response
11: (c1, c2)←Msk · (1, chl)
12: I ′chl ← KernelDecomposedToIdeal2f (c1, c2)
13: Ichl ← [Isk]∗I

′
chl // Ichl is the ideal corresponding to φIchl

14: αrsp ← RandomEquivalentQuaternion(Icom ∩ Isk · Ichl)
15: αrsp, nbt ← ComputeBacktrackingAndNormalize(αrsp)

16: drsp ← nrd(αrsp)/D
2
mix · 2f−nbt // drsp is the degree of φrsp

17: rrsp ← DyadicValuation(drsp)
18: qrsp ← drsp/2

rrsp

19: Icom,rsp ← O0αrsp +O0(qrspDmix) // Icom,rsp is the ideal corresponding to φcom ◦ φrsp

20: e′rsp ← ersp − rrsp − nbt // e′rsp is the degree of the two-dimensional isogeny
21: if e′rsp > 0 then
22: try
23: Iaux ← RandomIdealGivenNorm(2e

′
rsp − qrsp, false)

24: E′
aux, P

′
aux, Q

′
aux ← IdealToIsogeny(Icom,rsp ∩ Iaux)

25: except
26: continue
27: Eaux, Paux, Qaux, Echl, Pchl, Qchl ← SplitAuxiliaryIsogeny(Ecom, E

′
aux, Pcom, Qcom, P

′
aux, Q

′
aux, qrsp, e

′
rsp, rrsp)

28: else
29: try
30: Echl, Pchl, Qchl ← IdealToIsogeny(Icom,rsp)
31: Eaux, Paux, Qaux ← Echl, Pchl, Qchl

32: except
33: continue
34: if rrsp > 0 then
35: Echl, Pchl, Qchl ← ComputeEvenNonBacktrackingResponse(Echl, Pchl, Qchl, αrsp, e

′
rsp, rrsp)

36: Echl, Pchl, Qchl ← ComputeChallengeIsogeny(Epk, chl, Ppk, Qpk, Echl, Pchl, Qchl, nbt)
37: Mchl, hintaux, hintchl ← SetChangeOfBasisMatrix(Eaux, Echl, Paux, Qaux, Pchl, Qchl, e

′
rsp + rrsp)

38: σ ← (Eaux, nbt, rrsp,Mchl, chl, hintaux, hintchl)
39: return σ

4.4.2. Challenge

The challenge phase consists of hashing the public key pk, the j-invariant of the commitment curve Ecom, and the
message msg to a echl-bit number. Since echl is slightly less than λ, the challenge space may be too small to guarantee
security when the hash function is, for instance, SHAKE256. To overcome the issue, the hash function HASH is
defined as multiple iterations of SHAKE256 (this technique is sometimes known in the literature as ‘grinding’).
The number of iterations depends on the security level. We refer to Section 10.2.5 for more details.
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4.4.3. Response

The first step during the response generation is to convert the challenge chl into an ideal Ichl corresponding to
an isogeny originating from the curve Epk. To be more specific, the ideal Ichl corresponds to the isogeny with
kernel ⟨Ppk + [chl]Qpk⟩, where (Ppk, Qpk) is the deterministic basis corresponding to hintpk; it is computed as
follows. First, we look at the pullback of the isogeny with kernel ⟨Ppk+[chl]Qpk⟩ under the secret isogeny φsk. By
definition of Msk, its kernel is equal to ⟨[c1]P0 + [c2]Q0⟩, where (c1, c2) = Msk · (1, chl). We then generate the
ideal I ′chl via the function KernelDecomposedToIdeal2f and finally compute Ichl = [Isk]∗I

′
chl.

Once we have the ideal Ichl, we sample a quaternion element αrsp from the lattice Icom ∩ Isk · Ichl so that
nrd(α) < Drsp·D2

mix·2f . Under the Deuring correspondence, the lattice Icom∩Isk·Ichl can be seen as the set of all the
endomorphisms α of Ecom such that there exists an isogeny φ : Ecom → Echl verifying φ̂ ◦φIchl ◦φsk ◦ φ̂com = α.
Hence, the element αrsp can be used to describe an ideal equivalent to J = Icom · Isk · Ichl (specifically, the
ideal χJ(αrsp)).

The element αrsp must be uniformly sampled from the intersection of Icom ∩ (Isk · Ichl) and the ball with
radius Drsp · D2

mix · 2f . As explained in Section 3.1.5.1, the quaternion algebra Bp,∞ is a quadratic space whose
bilinear form is given by ⟨α, β⟩ = tr(αβ̄). In particular, we have ⟨α, α⟩ = 2nrd(α). Hence, to sample αrsp, it
use possible to use LatticeSampling with bound the quantity Drsp ·D2

mix · 2f+1. The procedure is summarized in
RandomEquivalentQuaternion.

Algorithm 4.3 RandomEquivalentQuaternion(L)

Input: A lattice L.
Output: A uniformly sampled b ∈ L such that nrd(b) < Drsp ·D2

mix · 2f .
1: Let (b0,b1,b2,b3) be a basis of L
2: Compute the Gram matrix G of (b0,b1,b2,b3)
3: b← LatticeSampling((b0,b1,b2,b3),G, Drsp ·D2

mix · 2f+1)
4: return b

Let φαrsp : Ecom → Ẽ denote the isogeny corresponding to the ideal described by αrsp. The codomain of the
isogeny φIchl : Epk → Ẽ, corresponding to the ideal Ichl, coincides with that of φαrsp . However, depending on αrsp,
the isogeny φαrsp and the isogeny φIchl may share a common factor, i.e., there exist three isogenies ψchl : Epk → E,
ψresp : Ecom → E and ψ̃ : E → Ẽ such that φαrsp = ψ̃ ◦ ψresp and φIchl = ψ̃ ◦ ψchl. Since the degree of φIchl

equals 2f , the degree of the common factor is equal to 2nbt , where 0 ≤ nbt ≤ f . Here, the notation nbt refers to the
fact that this quantity describes the number of steps to backtrack in order to have two isogenies that do not share
any common factor.

In practice, the exponent nbt is computed by looking at the shape of the quaternion element αrsp: as mentioned
above, the element αrsp represents an endomorphism verifying φ̂ ◦ φIchl ◦ φsk ◦ φ̂com = αrsp for some isogeny
φ : Ecom → Echl. Equivalently, the endomorphism αrsp can be seen as an endomorphism on E0: it is sufficient to
consider the endomorphism φ̂com ◦ φ̂ ◦φIchl ◦φsk. As a result, the quaternion αrsp can be expressed in terms of the
basis of O0. If we set α′

0, α
′
1, α

′
2, α

′
3 ∈ Z such that

αrsp = α′
0 + α′

1i+ α′
2

i+ j

2
+ α′

3

1 + k

2
,

then the exponent nbt is the largest positive integer such that 2nbt divides gcd(α′
0, α

′
1, α

′
2, α

′
3).

Once the exponent nbt has been computed, the quaternion αrsp is updated to αrsp/g. By doing this, the portion
of backtracking between the aforementioned isogenies φαrsp and φIchl is removed, and the isogeny described by the
new αrsp is now cyclic; this procedure is summarized in ComputeBacktrackingAndNormalize. The ideal described
by the element αrsp, which is the ideal corresponding to the response isogeny φrsp : Ecom → E, has now norm
drsp = nrd(αrsp)/(D

2
mix · 2f−nbt).

The next step is to construct an efficient representation of φrsp to send over to the verifier. The isogeny φrsp
can be seen as φrsp = φeven

rsp ◦ φodd
rsp : Ecom → Echl → E, where deg(φodd

rsp ) = qrsp is odd and deg(φeven
rsp ) = 2rrsp .

The isogeny φodd
rsp is then embedded into a two-dimensional isogeny between elliptic products, whereas the isogeny

φeven
rsp is represented via its kernel.

If e′rsp = ersp − rrsp − nbt > 0, the isogeny φodd
rsp is embedded into a (2e

′
rsp , 2e

′
rsp)-isogeny. To accomplish this,

another isogeny of degree 2e
′
rsp − qrsp originating from Ecom must be computed via the following method. First, a
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Algorithm 4.4 ComputeBacktrackingAndNormalize(α)

Input: A quaternion element α.
Output: A quaternion element α, and the backtracking n.

1: Write α as α = α0 + α1i+ α2j + α3k
2: α′

0 ← α0 − α3 // α′
0, α

′
1, α

′
2, α

′
3 represents α in the O0-basis

3: α′
1 ← α1 − α2

4: α′
2 ← α2/2

5: α′
3 ← α3/2

6: g ← gcd(α′
0, α

′
1, α

′
2, α

′
3)

7: n← DyadicValuation(g)
8: α← α/g
9: return α, n

random O0-left ideal Iaux of norm 2e
′
rsp − qrsp is sampled using RandomIdealGivenNorm. In general, the quantity

2e
′
rsp − qrsp is not prime. This means that RandomIdealGivenNorm may fail. If this occurs, it is necessary to restart

the entire signing procedure.
Let Icom,rsp denote the ideal associated to the isogeny φodd

rsp ◦φcom, i.e., Icom,rsp = O0αrsp+O0(qrspDmix), and let
Icom,rsp,aux = Icom,rsp∩Iaux. Using IdealToIsogeny, the isogeny φcom,rsp,aux : E0 → E′

aux corresponding to Icom,rsp,aux
is generated. It is worth mentioning that IdealToIsogeny may fail. If this occurs, it is necessary to restart the entire
signing procedure.

The two-dimensional isogeny Φ with kernel

⟨([2f−e
′
rsp ]φcom(P0), [q

−1
rsp 2

f−e′rsp ]φcom,rsp,aux(P0)), ([2
f−e′rsp ]φcom(Q0), [q

−1
rsp 2

f−e′rsp ]φcom,rsp,aux(Q0))⟩
is represented by the following matrix

Φ =

(
φaux −ψ̂
φodd

rsp φ̂′
aux

)
: Ecom × E′

aux → Eaux × Echl,

where the isogenies φaux : Ecom → Eaux and ψ : Echl → E′
aux fit into the diagram Figure 4.

Ecom Echl

Eaux E′
aux

φodd
rsp

φ′
auxφaux

ψ

Figure 4. Auxiliary isogeny diagram.

By evaluating the isogeny Φ at the pair of points ([2f−e
′
rsp−rrsp ]φcom(P0), 0E′

aux
) and ([2f−e

′
rsp−rrsp ]φcom(Q0), 0E′

aux
),

it is possible to obtain the images
• [2f−e

′
rsp−rrsp ]φaux ◦ φcom(P0),

• [2f−e
′
rsp−rrsp ]φaux ◦ φcom(Q0),

• [2f−e
′
rsp−rrsp ]φodd

rsp ◦ φcom(P0), and
• [2f−e

′
rsp−rrsp ]φodd

rsp ◦ φcom(Q0).
In practice, the two-dimensional isogeny Φ is computed using the algorithm Isogeny22ChainWithTorsion, which,
as explained in Section 2.4.1, requires additional torsion above the kernel generators. The algorithm to evaluate
the isogenies φaux and φodd

rsp on the 2e
′
rsp+rrsp+2-torsion is summarized in SplitAuxiliaryIsogeny. From here on, we

write (Paux, Qaux) to denote the points
(
[2f−e

′
rsp−rrsp−2]φaux ◦ φcom(P0), [2

f−e′rsp−rrsp−2]φaux ◦ φcom(Q0)
)

, and we

write (Pchl, Qchl) to denote the points
(
[2f−e

′
rsp−rrsp−2]φodd

rsp ◦ φcom(P0), [2
f−e′rsp−rrsp−2]φodd

rsp ◦ φcom(Q0)
)

.
If e′rsp = ersp − rrsp − nbt = 0, it means that φrsp = φeven

rsp . As a consequence, there is no need to compute any
two-dimensional isogeny or auxiliary isogeny. In this case, the ideal Icom,rsp is translated to the isogeny φcom,rsp via
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Algorithm 4.5 SplitAuxiliaryIsogeny(E1, E2, P1, Q1, P2, Q2, q, e
′, r)

Input: The curves E1 and E2, the points P1, Q1, P2 and Q2, the positive integers q, e′ and r such that there
exist four isogenies φq : E1 → F2, φ2e′−q : F2 → E2, ψ2e′−q : E1 → F1 and ψq : F1 → E2 verifying
deg(φd) = deg(ψd) = d, φ = φ2e′−q ◦ φq = ψq ◦ φ2e′−q and (P2, Q2) = (φ(P1), φ(Q1)).

Output: The curveF1 together with (R1, S1) = ([2f−e
′−r−2]ψ2e′−q(P1), [2

f−e′−r−2]ψ2e′−q(Q1)), the curveF2

together with (R2, S2) = ([2f−e
′−r−2]φq(P1), [2

f−e′−r−2]φq(Q1)).
1: P ′′

1 , Q
′′
1 ← [2f−e

′−r−2]P1, [2
f−e′−r−2]Q1

2: P ′
1, Q

′
1 ← [2r]P ′′

1 , [2
r]Q′′

1

3: qinv ← q−1 (mod 2f−e
′−2)

4: P ′
2, Q

′
2 ← [qinv2

f−e′−2]P2, [qinv2
f−e′−2]Q2

5: F1 ×F2, {(S1, S2), (R1, R2)} ← Isogeny22ChainWithTorsion((P ′
1, P

′
2), (Q

′
1, Q

′
2), {(P ′′

1 , 0E2
), (Q′′

1 , 0E2
)})

6: return F1, S1, R1, F2, S2, R2

IdealToIsogeny. As already mentioned, the algorithm IdealToIsogeny may fail; if that is the case, the signing al-
gorithm restarts with fresh randomness. Let (Pchl, Qchl) denote ([2f−e

′
rsp−2]φcom,rsp(P0), [2

f−rrsp−2]φcom,rsp(Q0)).
Additionally, the values Eaux, Paux, Qaux are set up to be equal to Echl, Pchl, Qchl.

As mentioned above, the isogeny φeven
rsp is represented via its kernel. This is only necessary if rrsp > 0. In

such an instance, the kernel φeven
rsp is computed as follows. It is worth noting that if the kernel of the isogeny

corresponding to the idealO0αrsp+O0(2
rrsp) coincides with ⟨[2f−rrsps]P0+[2f−rrspt]Q0⟩ for some integers s and t,

then ker(φeven
rsp ) = ⟨[2e

′
rsp+2s]Pchl + [2e

′
rsp+2t]Qchl⟩. The values s and t can be computed by running IdealToKernel

on input O0αrsp +O0(2
rrsp).

Once the values s and t have been computed, the isogeny φ : Echl → E with kernel ⟨[2e
′
rsp+2s]Pchl +

[2e
′
rsp+2t]Qchl⟩ is generated. Then, the curve Echl is updated to E, and the points Pchl and Qchl are updated to

φ(Pchl) and φ(Qchl), respectively. This step is summarized in ComputeEvenNonBacktrackingResponse.

Algorithm 4.6 ComputeEvenNonBacktrackingResponse(E,P,Q, α, e′, r)

Input: The curve E, the points P and Q, the quaternion α and the integers e′ and r.
Output: The curve E′, the points P ′ and Q′.

1: I ← O0α+O0(2
r)

2: (s, t)← IdealToKernel(I)

3: K ← [2e
′+2s]P + [2e

′+2s]Q
4: E′, {P ′, Q′} ← TwoIsogenyChainSmall(K,E, r, {P,Q}, true)
5: return E′, P ′, Q′

As mentioned above, the integer chl defines the challenge isogeny φchl originating from Epk. Differently from
the isogeny φIchl introduced at the beginning of this section, the isogeny φchl does not include the backtracking
steps. To be more precise, the quantity chl describes the kernel ⟨[2nbt ](Ppk + [chl]Qpk)⟩; let φchl : Epk → E′

chl be
the isogeny whose kernel equals ⟨[2nbt ](Ppk + [chl]Qpk)⟩. Even though the curves Echl and E′

chl are isomorphic,
they may be distinct. The points Pchl and Qchl are mapped onto E′

chl via IsomorphismMontgomeryCurves and
updated accordingly. The computation of the challenge isogeny is summarized in ComputeChallengeIsogeny.

Algorithm 4.7 ComputeChallengeIsogeny(E, ch, P,Q,E′, P ′, Q′, n)

Input: The curve E, an integer ch describing the kernel of an isogeny originating from E, the points P,Q on E,
the curve E′ together with two points P ′ and Q′ on E′, and the integer n.

Output: A curve E′′ together with two points P ′′ and Q′′.
1: E′′, _← TwoIsogenyChain([2n](P + [ch]Q), E, f − n, _ )
2: P ′′, Q′′ ← IsomorphismMontgomeryCurves(E′, P ′, Q′, E′′)
3: return E′′, P ′′, Q′′

The final part of the response generation is dedicated to obtaining a suitable representation of the data in-
cluded in the signature. If e′rsp > 0, the points Paux, Qaux, Pchl and Qchl describe the kernel of a two-dimensional
isogeny embedding the odd part of the response isogeny, namely φodd

rsp . The function SetChangeOfBasisMatrix is
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devoted to encoding these points in a matrix. The first step of this process consists of generating two determin-
istic bases (P det

aux, Q
det
aux) and (P det

chl , Q
det
chl) of Eaux and Echl, respectively, via TorsionBasisToHint; the hints hintaux

and hintchl output by TorsionBasisToHint are also part of the signature. Then, the change-of-basis matrix Maux

between (Paux, Qaux) and ([2f−e
′
rsp−rrsp−2]P det

aux, [2
f−e′rsp−rrsp−2]Qdet

aux) is computed using ChangeOfBasis. The basis
(P det

chl , Q
det
chl) is multiplied by Maux and then scaled by 2f−e

′
rsp−rrsp−2. The result will serve as input for the algorithm

ChangeOfBasis that outputs the change-of-basis-matrix Mchl.

Algorithm 4.8 SetChangeOfBasisMatrix(E1, E2, P1, Q1, P2, Q2, e)

Input: The elliptic curves E1 and E2, the points P1 and Q1 on E1, the points P2 and Q2 on E2, and an integer e.
Output: A change-of-basis M2 and the hints hint1 and hint2.

1: P ′
1, Q

′
1, hint1 ← TorsionBasisToHint(E1)

2: P ′
2, Q

′
2, hint2 ← TorsionBasisToHint(E2)

3: P ′
1, Q

′
1 ← [2f−e−2]P ′

1, [2
f−e−2]Q′

1

4: P ′
2, Q

′
2 ← [2f−e−2]P ′

2, [2
f−e−2]Q′

2

5: M1 ← ChangeOfBasis2e(E1, (P1, Q1), (P
′
1, Q

′
1))

6: (P2, Q2)←M1 · (P2, Q2)
7: M2 ← ChangeOfBasis2e(E2, (P

′
2, Q

′
2), (P2, Q2))

8: return M2, hint1, hint2

Finally, the signature σ consists in the following data.
(1) The auxiliary curve Eaux;
(2) the integer nbt, describing the number of backtracking steps;
(3) the integer rrsp, describing the largest integer such that 2nbt divides the degree of the response isogeny;
(4) the change-of-basis matrix Mchl;
(5) the challenge chl;
(6) the hint hintaux on the auxiliary curve;
(7) the hint hintchl on the challenge curve.

4.5. Verification
The algorithm SQIsign.Verify (Algorithm 4.9) describes the verification procedure. It checks whether the signature
is valid by evaluating the response isogeny φrsp : Ecom → Echl. On input a message msg, a signature σ =
(Eaux, nbt, rrsp,Mchl, chl, hintaux, hintchl), and a public key pk = (Epk, hintpk), the verifier first checks that the
curves Epk and Eaux are indeed supersingular.

In this setting, to check that a curve E is supersingular, it suffices to verify that there exists a basis of E[2f ].
This translates to proving that bases generated from the hints hintpk, hintaux and hintchl span the entire 2f -torsion.
The points computed for these bases serve as kernel generators for one- and two-dimensional isogenies. Therefore,
when computing such isogenies, the verifier additionally checks that the input is a correct basis. For efficiency
reasons, these checks are not explicit in the implementation, but rather a byproduct of a successful computation of
an isogeny. We refer to Section 8.4 and Section 8.5 for more details.

The formulas to compute the two-dimensional isogenies discussed in Section 2.4 require that kernels are
isotropic. Hence, to ensure that the algorithms employed during verification behave correctly, it is fundamental
to additionally check this condition; we refer to Section 8.5.3 for further detail on this step.

Before computing a representation for the response isogeny, the verifier needs to check that the data received
is valid. In particular, the verifier checks that the quantity e′rsp = ersp − nbt − rrsp ≥ 0 and that all the components
of Mchl are positive integer < 2e

′
rsp+rrsp+2.

After all the above checks, the verifier computes the deterministic basis (Ppk, Qpk) on Epk corresponding to
the hint hintpk. Such a basis is then used to generate the kernel of the challenge isogeny φchl : Epk → Echl: given
the challenge data chl, the kernel ker(φchl) is equal to ⟨[2nbt ](Ppk + [chl]Qpk)⟩.

Using the hint hintaux, the verifier computes the deterministic basis (Paux, Qaux). This basis is then scaled
down to the correct order: (Paux, Qaux) = ([2f−e

′
rsp+2]Paux, [2

f−e′rsp+2]Qaux). Similarly, using the hint hintchl, the
basis (Pchl, Qchl) is computed and then scaled down: (Pchl, Qchl) = ([2f−e

′
rsp−rrsp−2]Pchl, [2

f−e′rsp−rrsp−2]Qchl). To
reconstruct the correct evaluation under the response isogeny, it is necessary to scale (Pchl, Qchl) by the matrix
Mchl, i.e., (Pchl, Qchl) = Mchl · (Pchl, Qchl).
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Algorithm 4.9 SQIsign.Verify(msg, σ, pk)

Input: A message msg, signature σ and public key pk.
Output: verified a boolean indicating whether the verification passed.

1: Parse pk as (Epk, hintpk)
2: Parse σ as (Eaux, nbt, rrsp,Mchl, chl, hintaux, hintchl)
3: Check that Epk is supersingular, otherwise return false
4: Check that Eaux is supersingular, otherwise return false
5: Check that all the entries of Mchl are positive integers < 2e

′
rsp+rrsp+2, otherwise return false

6: e′rsp ← ersp − nbt − rrsp
7: Check that e′rsp ≥ 0, otherwise return false
8: Ppk, Qpk ← TorsionBasisFromHint(Epk, hintpk)
9: Echl, _← TwoIsogenyChain([2nbt ](Ppk + [chl]Qpk), Epk, f − nbt, _)

10: Paux, Qaux ← TorsionBasisFromHint(Eaux, hintaux)
11: Paux, Qaux ← [2f−e

′
rsp+2]Paux, [2

f−e′rsp+2]Qaux

12: Pchl, Qchl ← TorsionBasisFromHint(Echl, hintchl)
13: Pchl, Qchl ← [2f−e

′
rsp−rrsp−2]Pchl, [2

f−e′rsp−rrsp−2]Qchl

14: Pchl, Qchl ←Mchl · (Pchl, Qchl)
15: if rrsp > 0 then
16: if Mchl[0][0] is even and Mchl[0][1] is even then
17: Kresp ← [2e

′
rsp+2]Qchl

18: else
19: Kresp ← [2e

′
rsp+2]Pchl

20: Echl, {Pchl, Qchl} ← TwoIsogenyChainSmall(Kresp, Echl, rrsp, {Pchl, Qchl}, false)
21: if e′rsp = 0 then
22: chl′ ← HASH(pk || j(Echl) || msg)
23: return (chl = chl′)

24: Check that (([4]Pchl, [4]Paux), ([4]Qchl, [4]Qaux)) is isotropic, otherwise return false // See Section 8.5.3
25: try
26: F1 × F2, _← Isogeny22ChainWithTorsion((Pchl, Paux), (Qchl, Qaux), _ )
27: except
28: return false
29: chl′ ← HASH(pk || j(F1) || msg)
30: return (chl = chl′)

If rrsp > 0, this means that the response isogeny computed in the signing process had an even component. It is
then necessary to compute the dual of the even component. Its kernel corresponds to ⟨[2e

′
rsp+2]Pchl, [2

e′rsp+2]Qchl⟩;
let φ : Echl → E′

chl be the isogeny with this kernel and redefine (Pchl, Qchl) = (φ(Pchl), φ(Qchl)). The curve Echl

is updated to E′
chl.

In the case that e′rsp = ersp − nbt − rrsp = 0 (this happens with negligible probability, but it is technically
possible), there is no need to compute a two-dimensional isogeny. In this case, the curve Echl coincides with the
commitment curve computed by the prover.

The final step then consists in checking that HASH(pk || j(Echl) || msg) is equal to chl.
Now, assume that e′rsp = ersp−nbt−rrsp > 0. If the signature has been honestly generated, the couples of points

(Pchl, Paux) and (Qchl, Qaux) denote the 4-torsion above the kernel of a two-dimensional isogeny. Let Φ be such
an isogeny and let F1 × F2 its codomain. The curve F1 is isomorphic to the commitment curve generated during
the signing procedure, if the signature is valid. The last step of the verification process consists in recomputing the
challenge chl′ as HASH(pk || j(Echl) || msg). If chl′ = chl, the signature is valid, and it corresponds to an honest
execution of the signing algorithm.
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4.6. Binary format
For the purpose of transmitting the mathematical objects involved in the signature scheme over the wire, we have
to specify how they are encoded into bytes. The following types of component objects are involved:

• Elements of Fp are encoded as unsigned integers between 0 and p−1, in little-endian, using the smallest
number of bytes capable of representing all elements of Fp, i.e., ⌈log256(p)⌉ bytes.

• Elements of Fp2 are encoded by simply concatenating the encoding of the real part with the encoding of
the imaginary part.

• Integers in Z are encoded in little-endian two’s complement representation; the number of bytes is fixed
on a per-instance basis by the specification.

• Elliptic curves are encoded by their Montgomery coefficient A ∈ Fp2 .
• Ideals I are encoded concatenating the encoding of nrd(I), which is a FP_ENCODED_BYTES-byte integer,

with the encoding of the quaternion output by IdealGenerator(I). This quaternion is encoded by the
concatenation of four FP_ENCODED_BYTES-byte integers, denoting the integer coefficients in the 1, i, j, k-
basis.1

• 2× 2 integer matrices
(
a b
c d

)
are encoded by the concatenation of the encoding of a, b, c and d.

• Hints consist of two values (hA, h); the quantity hA is either zero or one, whereas h is a 7-bit integer. A
hint is then encoded in one byte, where the least significant bit represents the flag hA.

Public keys. The public key is encoded by concatenating the encodings of Epk from Step 5 of SQIsign.KeyGen
(Algorithm 4.1) together with the one of the hint hintpk from Step 8 of SQIsign.KeyGen (Algorithm 4.1).

Secret keys. The secret key is encoded by concatenating the encodings of the following objects, in order:
• the encoding of the public key pk;
• the ideal Isk from Step 4 of SQIsign.KeyGen (Algorithm 4.1);
• the 2×2 integer matrix Msk from Step 9 of SQIsign.KeyGen (Algorithm 4.1); the number of bytes to rep-

resent each matrix component is TORSION_2POWER_BYTES, which is a quantity specified in Appendix B
for each security level.

Signatures. The signature is encoded by concatenating the encodings of the following objects, in order:
• the Montgomery coefficient of Eaux from either Step 27 or Step 31 of SQIsign.Sign (Algorithm 4.2);
• the one-byte integer nbt from Step 15 of SQIsign.Sign (Algorithm 4.2);
• the one-byte integer rrsp from Step 19 of SQIsign.Sign (Algorithm 4.2);
• the 2 × 2 integer matrix Mchl from Step 37 of SQIsign.Sign (Algorithm 4.2); each component is repre-

sented by ⌊(ersp + 7)/8⌋ bytes.
• the λ/8-byte integer chl from Step 10 of SQIsign.Sign (Algorithm 4.2);
• the hint hintaux from Step 37 of SQIsign.Sign (Algorithm 4.2);
• the hint hintchl from Step 37 of SQIsign.Sign (Algorithm 4.2).

1The encoding of the quaternion does not include any denominator. The quaternion γ output by IdealGenerator(I) has a denominator r
that is invertible modulo the norm N := nrd(I). This implies that the pair (N, r · γ) generates I as an ideal, and thus the coefficients can be
scaled to be integral.



CHAPTER 5

Parameter sets

This chapter describes parameter requirements and lists the parameter sets for the instantiations of SQIsign in
the NIST-I, NIST-III, and NIST-V security levels.

5.1. Parameter requirements
Each parameter set consists of a prime p (the characteristic of the finite field), and a hash functionHASH (a collision-
resistant hash function used to apply the Fiat-Shamir transform). All other parameters can be deduced from p and
the above specification. The prime p is selected under the following considerations:

(1) Given a security parameter λ, we need prime sizes of log2(p) ≈ 2λ bits. Then, the best known attacks
have a complexity at least O(

√
p) = O(2λ) (see Chapter 10).

(2) To maximize efficiency, we aim for 2p to fit into a number of 64 bits words no greater than 2λ/64. Hence,
we aim for primes p of at most 255, 383, resp. 511 bits for NIST security levels I, III, resp. V.

(3) We restrict to primes p ≡ 3 (mod 4), which significantly simplifies implementations and is beneficial
for fast field arithmetic over Fp2 .

(4) The prime should be of the form p = c · 2f − 1 with c as small as possible; it is also desirable that c has
small Hamming weight.

(5) The hash functionHASH is used to generate the challenge. The length of the output of the hash function is
the length of the challenge echl. This quantify is computed as echl = f−

⌈
log2

(√
p
)⌉

(See Section 4.2.1).
Since this quantity is typically slightly smaller than the targeted security parameter λ, we apply the grind-
ing technique: to compensate for the λ − echl missing bits, the hash function is constructed by iterating
2λ−echl times a standard cryptographic hash function.

5.2. Parameter sets
In this section, we list parameter sets for the NIST-I, NIST-III, and NIST-V security levels. A parameter set consists
of a targeted security parameter λ, a prime p and a hash function HASH. All other parameters can be deduced from
p and the above specification; for convenience, we also list below the values of f and c such that p = c · 2f − 1.
All other derived values are listed in Appendix B.

Let n be any positive integer. In the following, we write SHAKE256n for the first n bits of SHAKE256. For
any function f : A→ B, with B ⊆ A, we write f◦n = f ◦ · · · ◦ f for f iterated n times.

NIST-I:

λI = 128

pI
5248 = 5 · 2248 − 1

= 0x4ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

HASH = SHAKE256122 ◦ SHAKE256◦63256
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NIST-III:
λIII = 192

pIII
65376 = 65 · 2376 − 1

= 0x40ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffffff

HASH = SHAKE256184 ◦ SHAKE256◦255384

NIST-V:
λV = 256

pV
27500 = 27 · 2500 − 1

= 0x1afffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

HASH = SHAKE256247 ◦ SHAKE256◦511512



CHAPTER 6

Known answer test values

The folder KAT of the submission media file contains KAT files for SQIsign parameters corresponding to
security levels NIST-I, NIST-III and NIST-V. Each KAT file contains values for secret keys (sk), public keys (pk),
signatures concatenated with messages (sm) and seeds (seed).
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CHAPTER 7

Performance analysis

The submission package includes a reference implementation written in portable C (C11) and an additional,
assembly-optimized implementation targeting the Intel Broadwell architecture (and later). Both implementations
share the same code base of the overall SQIsign library. The SQIsign library is built into several sub-modules that
are linked to libraries supporting the NIST signature API:

• signature: implementing the signature key-generation and signing protocols.
• verification: implementing the signature verification protocol.
• id2iso: implementation of ideal to isogeny algorithms.
• ec: module for the elliptic curve and isogeny computations.
• quaternion: module for quaternion computation. This module employs arbitrary precision arithmetic

based on GMP, and floating-point arithmetic using DPE.
• precomp: module to pre-compute constants for the code package.
• gf: implementation of the finite field arithmetic over Fp and Fp2 .
• hd: computations with (2,2)-isogenies in the theta model.
• mp: routines for arbitrary precision arithmetic of integers with no dependency of GMP.
• common: common dependencies and symmetric primitive implementations.

The SQIsign library contains a test harness for self-tests and KAT verification, and a benchmarking application
reporting CPU cycles. Each submodule contains further unit-testing suites. All build and test options are described
in the README.md file along with the submission package. While the implementation provides from-scratch im-
plementations of all SQIsign building blocks (except big integers and floating point arithmetic in the Quaternion
module), it is not constant-time.

7.1. Key and signature sizes
Key and signature sizes are listed in Table 4 for each security level.

Table 4. SQIsign key and signature sizes in bytes for each security level.

Parameter set Public key Secret key Signature

NIST-I 65 353 148

NIST-III 97 529 224

NIST-V 129 701 292

7.2. Reference implementation
For benchmarking, the reference implementation is built with two configurations: (1) using the GMP system in-
stallation on Ubuntu 22.04 LTS and (2) using a custom built version with disabled assembly code. The CMake
build options were:

(1) -DSQISIGN_BUILD_TYPE=ref -DCMAKE_BUILD_TYPE=Release
(2) -DSQISIGN_BUILD_TYPE=ref -DCMAKE_BUILD_TYPE=Release

-DGMP_LIBRARY:STRING=BUILD -DGMP_BUILD_CONFIG_ARGS:STRING="–disable-assembly"
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7.3. Optimized implementation
The optimized implementation is the same as the reference implementation.

7.4. Intel Broadwell optimized implementation
The additional implementation uses assembly-optimized code targeting the Intel Broadwell architecture (and later).
The assembly optimizations are applied to the GF-module, while the remaining code base is re-used from the
reference implementation; see Section 8.1 for more details. For benchmarking, we used the following CMake
options: -DSQISIGN_BUILD_TYPE=broadwell -DCMAKE_BUILD_TYPE=Release.

7.5. ARM Cortex-M4 implementation
The verification routines of the reference implementation are compatible with 32-bit embedded systems based on
e.g., the ARM Cortex-M4 core. However, the build system and provided applications are not suitable for a bare-
metal environment as typically provided in such systems. The recommended platform for evaluating SQIsign on
the ARM Cortex-M4 core is the pqm4 project [KPR+]. A helper shell script, to copy the source files to a folder
structure compatible with pqm4, is provided in the submission package; instructions for its use can be found in the
README.md file.

It is noted that pqm4 assumes that all API functions (key pair generation, signature and verification) are avail-
able, but this submission only provides verification routines for embedded systems. To work around this issue,
key pair generation and signature routines are mocked to return a fixed key pair and signatures of fixed messages
using that key pair, allowing a verification-only implementation to be evaluated. A GitHub repository is provided,
containing a snapshot of pqm4 at the time of the submission, incorporating the verification routines for SQIsign for
NIST-I, III and V parameter sets; these can be found in the sqisign branch of that repository, which is available
at the following URL:

• https://github.com/SQISign/the-sqisign-pqm4.

7.6. Performance evaluation
All builds below are compiled with clang 18, using compile flags -march=native -O3 and GMP version 6.3.0,
unless otherwise noted.

Performance evaluation of both the reference and assembly-optimized implementations was performed on an
Intel Core i7-13700K (13th generation, codename Raptor Lake) x86-64 CPU with nominal core clock of 3.4 GHz,
running Ubuntu Linux 24.04 LTS. Turbo Boost and HyperThreading were turned off during benchmarking to get
consistent timings. Comparing the current system to the machine specified in Round 1, which used an Intel Xeon
Gold 6338 (Ice Lake), shows a performance improvement of approximately 15% in terms of clock cycles. The
results are shown in Table 5.

Performance of the reference implementation was also evaluated on 64-bit ARM platforms, specifically, on an
Apple M3 Max CPU (performance core) with nominal core clock of 4.05 GHz, running macOS 15.2. The compiler
used is Apple clang 16. The results are shown in Table 6.

Lastly, performance, stack usage and code size of the verification routines were evaluated for the reference
implementation, using the pqm4 project, on an ST Microelectronics NUCLEO-L4R5ZI evaluation board for the
32-bit ARM Cortex-M4-based STM32L4R5ZI microcontroller. The results are shown in Table 7. As all other
schemes included in pqm4, to our knowledge, include all NIST API routines (key pair generation, signing and
verification), care should be taken when comparing stack usage and code size figures to this verification-only
implementation of SQIsign.

https://github.com/SQISign/the-sqisign-pqm4
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Table 5. SQIsign performance in 106 CPU cycles on an Intel Core i7-13700K CPU. Results
are the median of 1,000 benchmark runs.

Parameter set KeyGen Sign Verify

Reference implementation (with default GMP installation)

NIST-I 71.8 163.1 11.3

NIST-III 188.2 427.0 30.4

NIST-V 325.4 751.8 61.9

Reference implementation (with GMP –-disable-assembly)

NIST-I 84.4 203.1 11.3

NIST-III 227.9 548.9 30.5

NIST-V 402.6 1021.0 62.2

Assembly-optimized implementation for Intel Broadwell or later

NIST-I 43.3 101.6 5.1

NIST-III 134.0 309.2 18.6

NIST-V 212.0 507.5 35.7

Table 6. SQIsign performance in 106 CPU cycles on an Apple M3 Max CPU. Results are the
median of 1,000 benchmark runs.

Parameter set KeyGen Sign Verify

Reference implementation (with default GMP installation)

NIST-I 48.8 114.8 8.0

NIST-III 138.7 316.4 22.6

NIST-V 241.1 556.3 46.8

Reference implementation (with GMP –-disable-assembly)

NIST-I 57.5 138.6 8.0

NIST-III 163.6 396.4 22.6

NIST-V 293.4 732.6 46.8

Table 7. SQIsign verification performance, stack usage and code size on an ARM Cortex-M4-
based microcontroller, benchmarked using the pqm4 project, compiled with gcc version 13.2 with
pqm4’s preset optimization settings for speed. Results are obtained from a single run of the
benchmark.

Parameter set Verify

106 CPU cycles Stack usage (KB) Code size (KB)

NIST-I 123 31 40

NIST-III 375 50 44

NIST-V 751 64 46



CHAPTER 8

Implementation details

This chapter describes implementation details of the underlying algorithms that are required to construct
SQIsign. This includes implementation details of the field, elliptic-curve, pairing and isogeny arithmetic.

We note that, although the implementations provided in this submission do not run in constant-time, we have
made an effort to select and implement most of the algorithms covered in this chapter in constant-time.

The implementations included in the submission package support all field arithmetic operations described
in Section 2.1. In addition to the reference implementation, there are two platform-specific implementations, one
for 64-bit Intel processors, and another for 64-bit ARM processors supporting that architecture’s Cryptographic
Extensions. The only changes in these platform-specific implementations, compared to the reference implementa-
tions, are in the field arithmetic layer and the pseudo-random number generation. Concretely:

• In the reference implementation, operations over Fp and Fp2 are written in plain C, and pseudo-random
number generation uses operating system-specific facilities, such as reading from ‘/dev/[u]random’ in
Unix-based systems.

• In the 64-bit Intel implementation, addition, multiplication and squaring operations over Fp and Fp2 are
written in assembly language using optimized algorithms [Lon23]; these are described in Section 8.1.
Pseudo-random number generation uses the AES256-CTR-DRBG algorithm, accelerated using AES-NI
instructions.

• In the 64-bit ARM implementation, the same plain C field arithmetic code as in the reference implemen-
tation is used, and pseudo-random number generation uses the AES256-CTR-DRBG algorithm, acceler-
ated using ARM Cryptographic Extensions instructions.

Speedups of up to 10% for keypair generation and signing were observed through the use of accelerated
AES256-CTR-DRBG in the 64-bit Intel and 64-bit ARM implementations.

8.1. Finite field arithmetic
Since isogeny computations dominate the execution time of signature and verification, and rely heavily on arith-
metic in both Fp2 and its underlying field Fp, faster arithmetic in both fields directly leads to faster SQIsign per-
formance.

Both the reference and 64-bit Intel implementations utilize Montgomery arithmetic. The reference imple-
mentation uses an unsaturated or reduced-radix representation, whereas the 64-bit Intel implementation uses a
saturated or full-radix representation. Both implementations exploit the fact that SQIsign primes have the special
shape p = β · 2α − 1, with a relatively small integer β and a large integer α. Primes with this characteristic are
often referred to as Montgomery-friendly primes, which allow efficient Montgomery reduction; we refer to [FHLO-
JRH18; Lon23] for further details on this technique. The exceptionally high degree of Montgomery-friendliness
of the three SQIsign primes enabled us to develop particularly compact and performant implementations.

8.1.1. Reference implementation

We used Scott’s automatic code generator [Sco24] to synthesize portable C code for Fp arithmetic within the
SQIsign reference library. This generator employs an unsaturated representation, using radix 2r with r < 32 (for
32-bit CPUs) or r < 64 (for 64-bit CPUs). We utilized this generator to produce code for all three primes specified
in Section 5.2 for the NIST-I, NIST-III, and NIST-V security levels.

As stated above, Montgomery reduction is sped up by exploiting the Montgomery-friendly shape of the SQIsign
primes. A second source of speedup for Scott’s code generator is the avoidance of the final conditional subtraction
in Montgomery reduction, which is possible if the Montgomery parameter R is chosen so that R > 4p [Sco24].
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8.1.2. 64-bit Intel implementation

Our 64-bit Intel implementation performs Fp2 multiplication using a generalization of the interleaved radix-rMont-
gomery multiplication technique proposed in [Lon23]. Specifically, we implement [Lon23, Algorithm 5] after spe-
cializing it to SQIsign primes and setting B = 1; the resulting algorithm OptimizedPartialFp2Mul is presented as
Algorithm 8.1. This algorithm employs the coarsely integrated form to interleave the multiplication and reduction
parts.

Given a multiplication inFp2 with the form c = a·b = c0+c1 ·i, where c0 = a0b0−a1b1 and c1 = a0b1+a1b0,
we compute separately the terms c0 and c1 using Algorithm 8.1. For the computation of c1, we use (a0, b1) and
(a1, b0) as input pairs to Algorithm 8.1. Similarly, for the computation of c0, we use (a0, b0) and (a1, p− b1) (or
(a1, 2p−b1), resp.) as input pairs to Algorithm 8.1 for the NIST-I (NIST-III and NIST-V, resp.) security level; note
that we use negative values of b1 to guarantee a positive result. We pick either p or 2p for efficiency purposes and
based on a bound analysis. Based on this analysis, we are also able to eliminate or simplify the final conditional
subtraction, i.e., steps 6-7 of Algorithm 8.1, for NIST-III and NIST-V. We use radix r = 2w = 264.

For the implementation, we exploit the MULX and ADX instructions, which are available in Intel 5th gen-
eration core (codename Broadwell) processors and later. The specialized carry manipulation allowed by these
instructions enables an efficient implementation of multiply-add chains, as found in line 3 of Algorithm 8.1.

Algorithm 8.1 OptimizedPartialFp2Mul((a0, a1), (b0, b1))

Input: Integer input pairs (a0, a1) and (b0, b1) s.t. ai, bi ∈ [0, p) and 0 ≤ (a0b0 + a1b1) < pR, where R = 2nw,
p = β · 2α − 1, n = ⌈l/w⌉, l = ⌈log2 p⌉, and w is the computer wordsize; z = ⌈α/w⌉, p̂ = (p+1)/2zw, and
the radix r = 2w. Integers are represented in radix r, e.g., ai = (ai,n−1, . . . , ai,1, ai,0)r.

Output: The Montgomery residue c = (a0b0 + a1b1) ·R−1 mod p s.t. c ∈ [0, p)
1: u← 0
2: for j from 0 up to n− 1 do
3: u← u+ a0,j · b0 + a1,j · b1
4: q ← u mod 2w

5: u← ⌊u/2w⌋+ 2(z−1)wq · p̂
6: if u ≥ p then
7: u← u− p
8: return c← u

8.1.3. Other optimized field operations

For the remaining operations in Fp, we adopt different strategies for the reference and optimized versions. The
reference code implements exponentiation with exponent (p − 3)/4 in constant-time through an addition chain
for primes of form p ≡ 3 mod 4. The result is then reused to compute inversions, Legendre symbols and square
roots in Fp by adjusting the result to the correct powers (respectively p − 2, p−1

2 , p+1
4 ). In the optimized code,

we implemented Pornin’s algorithm for inversion [Por20a] and the Legendre symbol [Por20b] in constant-time, so
they could be used for both signature and verification.

In terms of cost, inverting in Fp2 amounts to computing an inversion, two multiplications, two squarings, and a
few additions in Fp. Quadratic character computations in Fp2 require two squarings, one addition, and a Legendre
symbol in Fp. For square root computation, only two exponentiations and a few multiplications in Fp are required,
as shown in Algorithm 8.2.

8.2. Elliptic curve arithmetic
This section describes explicit formulas for the curve arithmetic using Montgomery curves, with both projective
x-only coordinates and projective coordinates.
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Algorithm 8.2 SquareRoot(a)

Input: A quadratic residue a = a0 + ia1 ∈ Fp2 , with i2 = −1.
Output: A deterministically chosen element x ∈ Fp2 such that x2 = a.

1: δ ← (a20 + a21)
(p+1)/4

2: x0 ← a0 + δ
3: t0 ← 2x0
4: x1 ← t

(p−3)/4
0

5: x0 ← x0x1
6: x1 ← a1x1
7: t1 ← (2x0)

2

8: if t1 = t0 then
9: return x0 + ix1

10: else
11: return x1 − ix0

8.2.1. Projective x-only coordinates

Let E be a Montgomery curve defined over Fq by the equation By2 = x3 +Ax2 + x with A,B ∈ Fq . The points
of E over Fq are uniquely represented by their affine coordinates (x, y). In our implementation, we work with
projective coordinates (X : Y : Z) instead, where points of the curve satisfy

BY 2Z = X3 +AX2Z +XZ3

andX,Y, Z are not simultaneously zero. Projective points are defined up to scalar multiplication, which means that
we identify (λX : λY : λZ) with (X : Y : Z) for all λ ∈ F∗

q . When Z ̸= 0, the projective point P = (X : Y : Z)
corresponds to the affine point (x, y) = (X/Z, Y/Z). When Z = 0, the projective point P = (0 : 1 : 0) = 0E is
the point at infinity, which does not have an affine representation.

For efficiency reasons, we use x-only or (X : Z)-only arithmetic, disregarding the y- or Y -coordinate com-
pletely. With these coordinates, points are determined only up to sign, which is enough for our context. Namely,
the coordinates (X : Z) correspond to the two points P = (X : Y : Z) and −P = (X : −Y : Z) on E.

Additionally, our implementation disregards the curve parameter B which only affects the y-coordinates of
points. We represent A projectively as A = (APr : CPr) with A = APr/CPr, and will often use the alternative
representation (A24 : C24) = (APr + 2CPr : 4CPr).

8.2.2. Curve arithmetic

Below we give pseudocode for the x-only operations that our implementation uses. The basic operations are the
following:

• xDBL (Algorithm 8.3) takes as input the projective x-coordinate of a point P and the projective curve
parameters (A24 : C24), and outputs the projective x-coordinate of the point [2]P .

• xADD (Algorithm 8.4) takes as input the projective x-coordinates of the points P , Q, and P − Q, and
outputs the projective x-coordinate of the point P +Q.

• xDBLADD (Algorithm 8.5) combines an instance of xDBL and xADD in an efficient way. It takes as input
the projective x-coordinates of the points P ,Q, P −Q, and the projective curve parameters (A24 : C24),
and outputs the projective x-coordinates of the points P +Q and [2]P .

Using these basic operations, we can describe the following variants of scalar multiplications:
• Ladder (Algorithm 8.6) takes as input the projective x-coordinate of the point P , the projective curve

parameters (A24 : C24), and a positive scalar m, and outputs the projective x-coordinate of the point
[m]P .

• Ladder3pt (Algorithm 8.7) takes as input the projective x-coordinates of the points P , Q, P − Q, the
projective curve parameters (A24 : C24), and a positive scalarm, and outputs the projective x-coordinate
of the point P + [m]Q.

• LadderBiscalar (Algorithm 8.8) takes as input the projective x-coordinates of the points P , Q, P − Q,
the projective curve parameters (A24 : C24), and positive scalars m and n, and outputs the projective
x-coordinate of the point [m]P + [n]Q.
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We also describe IsomorphismMontgomeryCurves (Algorithm 8.9), which is a projective x-only implemen-
tation of Equation (6) to compute an isomorphism between two curves and push points through it.

Algorithm 8.3 xDBL(P, (A24 : C24))

Input: A projective point P = (XP : ZP ) and the Montgomery coefficient (A24 : C24) of the curve E.
Output: The projective point [2]P = (X2P : Z2P ).

1: t0 ← XP + ZP
2: t0 ← t20
3: t1 ← XP − ZP
4: t1 ← t21
5: t2 ← t0 − t1
6: t1 ← t1 · C24

7: X2P ← t0 · t1
8: t0 ← t2 ·A24

9: t0 ← t0 + t1
10: Z2P ← t0 · t2
11: return [2]P = (X2P : Z2P ) // Cost: 2S+ 4M+ 4a

Algorithm 8.4 xADD(P,Q, P −Q)

Input: Projective points P = (XP : ZP ), Q = (XQ : ZQ), P −Q = (XP−Q : ZP−Q).
Output: The projective sum P +Q = (XP+Q : ZP+Q).

1: t0 ← XP + ZP
2: t1 ← XP − ZP
3: t2 ← XQ + ZQ
4: t3 ← XQ − ZQ
5: t0 ← t0 · t3
6: t1 ← t1 · t2
7: t2 ← t0 + t1
8: t3 ← t0 − t1
9: t2 ← t22

10: t3 ← t23
11: XP+Q ← ZP−Q · t2
12: ZP+Q ← XP−Q · t3
13: return P +Q = (XP+Q : ZP+Q) // Cost: 2S+ 4M+ 6a
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Algorithm 8.5 xDBLADD(P,Q, P −Q, (A24 : C24))

Input: Projective points P = (XP : ZP ), Q = (XQ : ZQ), P − Q = (XP−Q : ZP−Q). and the Montgomery
coefficient (A24 : C24) of the curve E.

Output: Projective points [2]P = (X2P : Z2P ) and P +Q = (XP+Q : ZP+Q).
1: t0 ← XP + ZP
2: t1 ← XP − ZP
3: X2P ← t20
4: t2 ← XQ − ZQ
5: XP+Q ← XQ + ZQ
6: t0 ← t0 · t2
7: Z2P ← t21
8: t1 ← t1 ·XP+Q

9: t2 ← X2P − Z2P

10: Z2P ← Z2P · C24

11: X2P ← X2P · Z2P

12: XP+Q ← A24 · t2
13: ZP+Q ← t0 − t1
14: Z2P ← Z2P +XP+Q

15: XP+Q ← t0 + t1
16: Z2P ← Z2P · t2
17: ZP+Q ← Z2

P+Q

18: XP+Q ← X2
P+Q

19: ZP+Q ← ZP+Q ·XP−Q
20: XP+Q ← XP+Q · ZP−Q
21: return ([2]P, P +Q) = ((X2P : Z2P ), (XP+Q : ZP+Q)) // Cost: 4S+ 8M+ 8a

Algorithm 8.6 Ladder(P,E,m)

Input: A projective point P = (XP : ZP ), the Montgomery coefficient (A24 : C24) of the curveE, and a positive
scalar m with binary representation m = (mk−1, . . . ,m0)2.

Output: The projective point [m]P = (X[m]P : Z[m]P ).
1: ((X0 : Z0), (X1 : Z1))← ((1 : 0), (XP : ZP ))
2: for i from k − 1 down to 0 do
3: if mi = 1 then
4: ((X1, Z1), (X0, Z0))← xDBLADD((X1 : Z1), (X0 : Z0), (XP : ZP ), (A24 : C24))
5: else
6: ((X0 : Z0), (X1 : Z1))← xDBLADD((X0 : Z0), (X1 : Z1), (XP : ZP ), (A24 : C24))

7: (X[m]P : Z[m]P )← (X0 : Z0)
8: return [m]P = (X[m]P : Z[m]P )

Algorithm 8.7 Ladder3pt(P,Q, P −Q, (A24 : C24),m)

Input: Projective points P = (XP : ZP ), Q = (XQ : ZQ), P −Q = (XP−Q : ZP−Q), the Montgomery coeffi-
cient (A24 : C24) of the curve E, and a positive scalar m with binary representation m = (mk−1, . . . ,m0)2.

Output: The projective point P + [m]Q = (XP+[m]Q : ZP+[m]Q).
1: ((X0 : Z0), (X1 : Z1), (X2 : Z2))← ((XP : ZP ), (XQ : ZQ), (XP−Q : ZP−Q))
2: for i from 0 up to k − 1 do
3: if mi = 1 then
4: ((X0, Z0), (X1, Z1))← xDBLADD((X0 : Z0), (X1 : Z1), (X2 : Z2), (A24 : C24))
5: else
6: ((X0 : Z0), (X2 : Z2))← xDBLADD((X0 : Z0), (X2 : Z2), (X1 : Z1), (A24 : C24))

7: (XP+[m]Q : ZP+[m]Q)← (X1 : Z1)
8: return P + [m]Q = (XP+[m]Q : ZP+[m]Q)
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Algorithm 8.8 LadderBiscalar(P,Q, P −Q, (A24 : C24),m, n)

Input: Projective points P = (XP : ZP ), Q = (XQ : ZQ), P −Q = (XP−Q : ZP−Q), the Montgomery coeffi-
cient (A24 : C24) of the curveE, and positive scalarsm,nwith binary representationsm = (mk−1, . . . ,m0)2
and n = (nk−1, . . . , n0)2, resp.

Output: The projective point [m]P + [n]Q = (X[m]P+[n]Q : Z[m]P+[n]Q).
1: Recoding stage:
2: if m is even and n is odd then
3: σ = (σ0, σ1)← (1, 0)
4: else
5: σ = (σ0, σ1)← (0, 1)

6: m′ ← m,n′ ← n
7: if m is even then
8: m′ ← m′ − 1

9: if n is even then
10: n′ ← n′ − 1

11: Set b = (b0, b1), where b0 ← (0,m′
k−1, . . . ,m

′
0) and b1 ← (0, n′k−1, . . . , n

′
0)

12: for i from 0 up to k − 1 do
13: r2i ← bσ0,i ⊕ bσ0,i+1

14: r2i+1 ← bσ1,i ⊕ bσ1,i+1

15: if r2i+1 = 1 then
16: t← σ0
17: σ0 ← σ1
18: σ1 ← t
19: Evaluation stage:
20: R0 ← (1 : 0)
21: T = (T0, T1)← (P,Q)
22: R1 ← Tσ0

23: R2 ← Tσ0+1 (mod 2)

24: D1 ← R1

25: D2 ← R2

26: R2 ← xADD(R1, R2, P −Q)
27: F1 ← R2

28: F2 ← P −Q
29: for i from k − 1 down to 0 do
30: h← r2i + r2i+1

31: T0 ← Rh (mod 2)

32: T = (T0, T1)← (T0, R2)
33: T0 ← xDBL(T⌊h/2⌋, (A24 : C24))
34: T1 ← Rr2i+1

35: T2 ← Rr2i+1+1

36: if r2i+1 = 1 then
37: TMP← D1

38: D1 ← D2

39: D2 ← TMP
40: T1 ← xADD(T1, T2, D1)
41: T2 ← xADD(R0, R2, F1)
42: if h (mod 2) = 1 then
43: TMP← F1

44: F1 ← F2

45: F2 ← TMP
46: R0 ← T0
47: R1 ← T1
48: R2 ← T2
49: (X[m]P+[n]Q : Z[m]P+[n]Q)← R(m (mod 2)⊕1)+(n (mod 2)⊕1)

50: return [m]P + [n]Q = (X[m]P+[n]Q : Z[m]P+[n]Q)
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Algorithm 8.9 IsomorphismMontgomeryCurves(E,P,Q,E′)

Input: Montgomery coefficients (A : C) and (A′ : C ′) of the curves E and E′, respectively, and points P =
(XP : ZP ), Q = (XQ : ZQ) in E.

Output: The images P ′ = (X ′
P : Z ′

P ), Q
′ = (X ′

Q : Z ′
Q) of P and Q under an isomorphism between E and E′.

1: λx ← (2A′3 − 9A′C ′2)(3C3 −A2C)
2: λz ← (2A3 − 9AC2)(3C ′3 −A′2C ′)
3: if λx = 0 or λz = 0 then
4: raise (“IsomorphismMontgomeryCurves: invalid input curve.”)
5: XP ′ ← λx(3XPCC

′ +AC ′ZP )− λzA′CZP
6: ZP ′ ← 3λzCC

′ZP
7: XQ′ ← λx(3XQCC

′ +AC ′ZQ)− λzA′CZQ
8: ZQ′ ← 3λzCC

′ZQ
9: return (XP ′ : ZP ′), (XQ′ : ZQ′)

Remark 1. Algorithm 8.9 fails for the specific cases when either (A/C)2 or (A′/C ′)2 is in {0, 3, 9/2}, which
are corner cases that arise from writing Equation (6) projectively. This introduces a probability of failure that is
negligible as long as the inputs are honestly generated, which does not represent a problem since the algorithm is
only used in signing.

8.2.3. Projective point difference

Recall that Equation (7) forces us to make an arbitrary choice of sign when computing the difference of two points
using x-only coordinates. While either of the choices is valid, it is important that the choice be done determinis-
tically so that the same basis is obtained during signing and verification. Using projective coordinates introduces
a new challenge, since we must specify the behavior of the square root on a projective quantity in a way that
is projectively invariant. For instance, a natural choice that requires only one square root over Fp2 is to define√

(x : z) := (
√
xz : z), but this definition is not projectively invariant (that is,

√
(x : z) and

√
(λx : λz) may in

general differ by a sign). Instead, we define√
(x : z) :=

(√
xz3z̄4 : z2z̄2

)
.

This definition can be shown to be projectively invariant, thanks to the fact that our choice of square root over Fp2
satisfies the special property that

√
λ4x = λ2

√
x for all x ∈ Fp2 , λ ∈ Fp.

The ProjectiveDifference algorithm implements Equation (7) for r+ projectively using this principle.

Algorithm 8.10 ProjectiveDifference(P,Q, (A : C))

Input: Projective points P = (XP : ZP ) and Q = (XQ : ZQ) and the Montgomery coefficient (A : C).
Output: A deterministic x-coordinate xPQ, either xP−Q or xP+Q.

1: BXX ← C · (XPXQ − ZPZQ)2
2: BXZ ← C · (XPXQ + ZPZQ)(XPZQ + ZPXQ) + 2AXPXQZPZQ
3: BZZ ← C · (XPZQ − ZPXQ)

2

4: γ ← C · (C · ZP · ZQ)2
5: BXX ← γ ·BXX , BXZ ← γ ·BXZ , BZZ ← γ ·BZZ ,
6: δ ← SquareRoot(B2

XZ −BXXBZZ)
7: XPQ ← δ +BXZ , ZPQ ← BZZ
8: return xPQ = (XPQ, ZPQ)

8.2.4. Jacobian coordinates

Our implementation occasionally requires full projective coordinate arithmetic instead of just x-only. This is, for
example, the case in Section 8.5.5. In such cases, for efficiency reasons, we define our arithmetic using Jacobian
coordinates, in which a point P over the curve E is defined by coordinates (X : Y : Z) satisfying

BY 2 = X3 +AX2Z2 +XZ4
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with the point at infinity (0 : 1 : 0). Instead of the standard projective equivalence (X : Y : Z) ∼ (λX : λY : λZ)
for any λ ∈ F∗

q , the Jacobian equivalence is defined as (X : Y : Z) ∼ (λ2X : λ3Y : λZ) for any λ ∈ F∗
q . The

transformation between Montgomery and Jacobian coordinates is defined as follows:

• A point P in Jacobian coordinates (XJ : YJ : ZJ) corresponds to Montgomery coordinates

(XM : YM : ZM ) =
(
XJ : YJ/ZJ : Z2

J

)
.

• Conversely, a point P in Montgomery coordinates (XM : YM : ZM ) has Jacobian representation

(XJ : YJ : ZJ) =
(
XM −AZ2

M/3, YM , ZM
)
.

Below, we give pseudocode for arithmetic in Jacobian coordinates. The basic operations are the following:

• DBL (Algorithm 8.11) takes as input the Jacobian coordinates of a point P and the projective curve
parameters (A24 : C24), and outputs the Jacobian coordinates of the point [2]P .

• ADD (Algorithm 8.12) constant time, complete addition formula, takes as input the Jacobian coordinates
of two pointsP ,Q and the projective curve parameters (A24 : C24), and outputs the Jacobian coordinates
of the point P +Q.

• ADDComponents (Algorithm 8.13) takes as input the Jacobian coordinates of distinct points P , Q and
the projective curve parameters (A24 : C24), and outputs u, v, w, that describe the projective x-only
coordinates of P +Q and P −Q, with P +Q = (u− v : w) and P −Q = (u+ v : w).

Algorithm 8.11 DBL(P, (A24 : C24))

Input: Jacobian point P = (XP : YP : ZP ) and the Montgomery coefficient (A24 : C24) of the curve E.
Output: The Jacobian point [2]P = (X[2]P : Y[2]P : Z[2]P ).

1: t0 ← X2
P

2: t1 ← t0 + t0
3: t0 ← t0 + t1
4: t1 ← Z2

P

5: t2 ← XP ·A24

6: t2 ← t2 + t2
7: t2 ← t1 + t2
8: t2 ← t1 · t2
9: t2 ← t0 + t2

10: Z[2]P ← YP · ZP
11: Z[2]P ← Z[2]P + Z[2]P

12: t0 ← Z2
[2]P

13: t0 ← t0 ·A24

14: t1 ← Y 2
P

15: t1 ← t1 + t1
16: t3 ← xP + xP
17: t3 ← t1 · t3
18: X[2]P ← t22
19: X[2]P ← X[2]P − t0
20: X[2]P ← X[2]P − t3
21: X[2]P ← X[2]P − t3
22: Y[2]P ← t3 −X[2]P

23: Y[2]P ← Y[2]P · t2
24: t1 ← t21
25: Y[2]P ← Y[2]P − t1
26: Y[2]P ← Y[2]P − t1
27: return [2]P = (X[2]P : Y[2]P : Z[2]P ) // Cost: 6S+ 6M+ 14a
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Algorithm 8.12 ADD(P,Q, (A24 : C24))

Input: Two Jacobian points P = (XP : YP : ZP ), Q = (XQ : YQ : ZQ) and the Montgomery coefficient
(A24 : C24) of the curve E.

Output: The Jacobian point P +Q = (XP+Q : YP+Q : ZP+Q).
1: ctl1 ← (P = 0)
2: ctl2 ← (Q = 0)
3: t0 ← Z2

P

4: t1 ← Z2
Q

5: v1 ← t1 · ZQ
6: t2 ← t0 · ZP
7: v1 ← v1 · YP
8: t2 ← t2 · YQ
9: dy ← t2 − v1

10: u2 ← t0 ·XQ

11: u1 ← t1 ·XP

12: dx← u2 − u1
13: t1 ← YP + YP
14: t2 ← A24 ·XP

15: t2 ← t2 + t2
16: t2 ← t2 + t0
17: t2 ← t2 · t0
18: t0 ← X2

P

19: t2 ← t2 + t0
20: t2 ← t2 + t0
21: t2 ← t2 + t0
22: t2 ← t2 · ZQ
23: ctl← (dx = 0) ∧ (dy = 0)
24: if ctl then swap (dx, t1) and (dy, t2)
25: t0 ← ZP · ZQ
26: t1 ← t20
27: t2 ← dx2

28: t3 ← dy2

29: XP+Q ← A24 · t1
30: XP+Q ← XP+Q + u1
31: XP+Q ← XP+Q + u2
32: XP+Q ← XP+Q · t2
33: XP+Q ← t3 −XP+Q

34: YP+Q ← u1 · t2
35: YP+Q ← YP+Q −XP+Q

36: YP+Q ← dy · YP+Q

37: t3 ← dx · t2
38: t3 ← t3 · v1
39: YP+Q ← YP+Q − t3
40: ZP+Q ← dx · t0
41: if ctl1 then set R← Q
42: if ctl2 then set R← P
43: return P +Q = (XP+Q : YP+Q : ZP+Q) // Cost: 6S+ 17M+ 13a
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Algorithm 8.13 ADDComponents(P,Q, (A24 : C24))

Input: Distinct Jacobian points P = (XP : YP : ZP ), Q = (XQ : YQ : ZQ) and the Montgomery coefficient
(A24 : C24) of the curve E.

Output: (u, v, w) such that the x-only coordinates of P +Q and P −Q are P +Q = (u− v : w) and P −Q =
(u+ v : w).

1: t0 ← Z2
P

2: t1 ← Z2
Q

3: t2 ← XP · t1
4: t3 ← t0 ·XQ

5: t4 ← YP · ZQ
6: t4 ← t4 · t1
7: t5 ← ZP · YQ
8: t5 ← t5 · t0
9: t0 ← t0 · t1

10: t6 ← t4 · t5
11: t4 ← t24
12: t5 ← t25
13: t4 ← t4 + t5
14: t5 ← t2 + t3
15: t7 ← t3 + t3
16: t7 ← t5 − t7
17: t7 ← t27
18: t1 ← A24 · t0
19: t1 ← t5 + t1
20: t1 ← t1 · t7
21: u← t4 − t1
22: v ← t6 + t6
23: w ← t6 · t0
24: return (u, v, w) // Cost: 5S+ 11M+ 7a

8.3. Computing pairings
This section describes the computation of pairings in the reference implementation of SQIsign. Usage of pairings
is described in Section 2.2.5. There are several ways to compute Tn(P,Q) given P,Q and n. The most popular
methods include Miller’s loop approach [Mil04], cubical arithmetic [Rob24], and elliptic nets [Sta07]. In the
remaining of this section, we outline the first two methods.

In general, a Miller function fn,P is a function f : E → P1 with a zero of multiplicity n atP , a pole at [n]P and
a pole with multiplicity n−1 at 0E , that is, Div(fn,P ) = n(P )− ([n]P )− (n−1)(0E). If P ∈ E[n], this reduces
to Div(fn,P ) = n(P ) − n(0E). Defining divisors DP = (P ) − (0E) and DQ = (Q) − (0E), and given such
functions fn,P and fn,Q, the (unreduced) Tate pairing for P,Q ∈ E[n] can be effectively computed as Tn(P,Q) =
fn,P (DQ). With the exception of minor technical details, which are thoroughly discussed in [BKLS02], we can
simply compute fn,P (DQ) = fn,P (Q).

8.3.1. The Miller loop approach

This approach has been intensively studied in the literature (see [FST10] for a survey of pairings, and [Rei23] for
some applications of pairings in isogeny-based cryptography). In a nutshell, Tn can be obtained by first computing
a Miller loop that computes the Miller function fnP , satisfying div(fnP ) = n(P ) − n(0E) [Mil04]. The Miller
loop computes fnP using a double-and-add algorithm with ⌈log2(n)⌉ iterations. More specifically, the value of f
is updated at each iteration according to the Miller formula,

f(n+m)P = fnP · fmP ·
l

v
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where l and v are the lines associated to the addition of the points nP and mP . When n = m, we refer to this as
doubling nP , and when m = 1, we add the points nP and P . SQIsign only requires pairings of degree n = 2e,
hence we only need to perform exactly e doublings and no additions in the Miller loop. Having computed fnP (Q),
we raise it to the power

q − 1

n
= (p− 1) · p+ 1

n
,

to compute the unreduced Tate pairing tn. Using the Frobenius operator π : x → xp which acts on Fp2 as
π(a + bi) = a − bi, and the nearly free divisions of elements over the subgroup µn, we can easily exponentiate
fnP (Q) to the power p− 1. Finally, since p+1

n is a small integer, this final exponentiation is relatively inexpensive.
This completes the computation of the Tate pairing using the Miller approach presented in [Mil04].

Although this is by far the most popular approach for computing pairings, the Miller loop has generally been
defined using affine or projective coordinates, rather than in the context of x-only elliptic-curve arithmetic, which
is the preferred approach in SQIsign. Cubical arithmetic addresses this limitation.

8.3.2. The cubical arithmetic approach

In [Sta08], the author explains that Tn(P,Q) can be reinterpreted as the monodromy g⋆1,nP,Q = Tn(P,Q), viewed as
a constant function on the curve, in the biextension associated to the principal polarization (0E) on E, where gP,Q
is a rational biextension element above (P,Q). This idea is further developed in [Rob24], where it is shown that
the biextension arithmetic and the associated monodromy can be refined by means of cubical arithmetic.

We note that will be working with the cubical arithmetic of level 2, associated to the divisor 2(0E), on an
elliptic curve in Montgomery form E : y2 = x3 + Ax2 + 1, using the cubical formulas from [Rob24]. We have
Γ(2(0E)) = (X,Z), where x = X/Z represent the x-Weierstrass coordinate of E. The x coordinate x(P ) of
a point P = (x(P ), y(P )) ∈ E allows to recover P up to a sign. We can also use the projective coordinates
(X(P ) : Z(P )) = (x(P ) : 1). A (level 2) cubical point P̃ above P is specified by a choice P̃ = (X(P ), Z(P ))
of affine coordinates such that x(P ) = X(P )/Z(P ).

Using cubical arithmetic, computing Tn(P,Q) requires us to compute two monodromies λP and λP,Q, where
λP ∈ Fp2 such that ˜[n]P = λP · 0̃ and λP,Q ∈ Fp2 such that ˜[n]P +Q = λP,Q · Q̃, with 0̃ = (0, 1), Q̃ = (xQ, 1),
where ˜[n]P and ˜[n]P +Q are the outputs ofCubicalLadder, givenP ,Q andn. We then findTn(P,Q) = λP,Q/λP .
This is the result of the Monodromy algorithm.

Whenn | p+1, the final reduction to obtain tn(P,Q) requires us to raiseTn(P,Q) to (p2−1)/n = (p−1)· p+1
n .

Raising ζ ∈ Fp2 to the power (p− 1) is again simply π(ζ)/ζ. Hence, the final reduction can be computed as

tn(P,Q) = (π(λP,Q)/π(λP ) · λP /λP,Q)
p+1
n . (10)

The Tate algorithm computes this value tn(P,Q) given P and Q.
To summarize, Algorithm 8.19 computes the Tate algorithm by first calculating a monodromy λ followed by

the final exponentiation to the power p2−1
2e . The monodromy is computed by executing the three-point cubical

arithmetic ladder in Algorithm 8.16, which uses the cubical double and cubical differential additions from Algo-
rithm 8.14 and Algorithm 8.15 as auxiliary blocks. Notice also that the monodromy computation requires perform-
ing a couple of cubical translations from Algorithm 8.17 and ratios from Algorithm 8.18.

We warn the reader that our implementation of the Tate algorithm is slightly different from the simplified
description given above, as we use x-only arithmetic. Thus, we work with cubical points of level 2, which encode
elements in the biextension associated to the divisor 2(0E) rather than (0E). The former biextension monodromy
yields the square of the Tate pairing Tn(P,Q). Since we will use the Tate pairing for n a power of two, this loses
one bit of information. Instead, we use the action of the theta group G(2(0E)), via CubicalTranslate, to get the
correct monodromy factor, i.e., from the biextension associated to (0E).

A final important caveat is that CubicalDiffAdd as described is off by a factor 4 from the correct cubical arith-
metic: in the algorithm we should return (X2/4, Z2/4). However, the current version still gives the correct Weil
pairing en(P,Q) = Tn(P,Q)/Tn(Q,P ), and, thanks to the final exponentiation, the reduced Tate-Lichtenbaum
pairing tn(P,Q) over Fp2 . But one should be careful that the current version will not give the correct reduced
Tate-Lichtenbaum pairing if computed over Fp. Note that SQIsign only explicitly computes the Tate pairing.
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Algorithm 8.14 CubicalDbl(E, P̃ )

Input: An elliptic curve E : y2 = x3 +Ax2 + x in Montgomery model and a cubical point P̃ = (X(P ), Z(P )).
Output: The cubical double 2P̃ .

1: a← (X(P ) + Z(P ))2

2: b← (X(P )− Z(P ))2
3: c← a− b
4: X2 ← a · b
5: Z2 ← c · (b+ A+2

4 · c)
6: return (X2, Z2)

Algorithm 8.15 CubicalDiffAdd(E, P̃ , Q̃, x(P −Q))

Input: Two cubical points in cubical Montgomery coordinates P̃ = (X(P ), Z(P )), Q̃ = (X(Q), Z(Q)) and the
x-coordinate of their difference x(P −Q).

Output: The cubical differential addition P̃ +Q.
1: a← X(P ) + Z(P )
2: b← X(P )− Z(P )
3: c← X(Q) + Z(Q)
4: d← X(Q)− Z(Q)
5: X2 ← (a · d+ b · c)2
6: Z2 ← (a · d− b · c)2
7: X2 ← X2/x(P −Q)
8: return (X2, Z2)

Algorithm 8.16 CubicalLadder(E, e, P̃ +Q, P̃ , x(Q))

Input: An elliptic curveE : y2 = x3+Ax2+x in Montgomery model, an integer e, two cubical points P̃ +Q =

(X(P +Q), Z(P +Q)), P̃ = (X(P ), Z(P )) and the x-coordinate x(Q) of Q.
Output: The cubical points 2eP̃ and 2eP̃ + Q̃.

1: nPQ← P̃ +Q

2: nP ← P̃
3: for k from 1 up to e do
4: nPQ← CubicalDiffAdd(E,nPQ, nP, x(Q))
5: nP ← CubicalDbl(E,nP )

6: return (nP, nPQ)

Algorithm 8.17 CubicalTranslate(P̃ , T̃ )

Input: Cubical Montgomery coordinates P̃ = (X(P ), Z(P )) and T̃ = (X(T ), Z(T )) where T = (X(T ) :
Z(T )) is a 2-torsion point.

Output: The cubical translation P̃ + T = (X(P + T ), Z(P + T )).
1: X ← X(T )X(P )− Z(T )Z(P )
2: Z ← Z(T )X(P )−X(T )Z(P )
3: if Z(T ) = 0 then
4: Z ← −Z
5: if X(T ) = 0 then
6: X ← −X
7: return (X,Z)
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Algorithm 8.18 CubicalRatio(P̃1, P̃2)

Input: Cubical Montgomery coordinates P̃1 = (X(P1), Z(P1)) and P̃2 = (X(P2), Z(P2)) such that P1 =
(X(P1) : Z(P1)) = P2 = (X(P2) : Z(P2)).

Output: The ratio λ such that X(P2) = λX(P1) and Z(P2) = λZ(P1).
1: if X(P1) = 0 then
2: return Z(P2)/Z(P1)
3: else
4: return X(P2)/X(P1)

Algorithm 8.19 Tate(E, e, x(P ), x(Q), x(P +Q))

Input: A supersingular elliptic curve E : y2 = x3 + Ax2 + x/Fp2 in Montgomery model, an integer e, the
x-coordinates of the points P,Q, P +Q ∈ E(Fp2) where 2eP = 0E .

Output: The reduced Tate pairing t2e(P,Q) ∈ µ2e .
1: nP, nPQ← CubicalLadder(E, e− 1, (x(P +Q), 1), (x(P ), 1), x(Q))
2: O ← CubicalTranslate(nP, nP )
3: Q′ ← CubicalTranslate(nPQ, nP )
4: λ← CubicalRatio(P, P ′)/CubicalRatio((1, 0), O)

5: return λ(p2−1)/2e // Using Eq. (10)

8.4. Isogenies
Below we give pseudocode for the x-only elliptic curve isogenies that our implementation uses. SQIsign only re-
quires isogenies of degree 2n, which we compute through chains of 2- resp. 4-isogenies. These individual isogenies
use the following algorithms:

• TwoIsogenyCodomain (Algorithm 8.20) takes as input the projective x-coordinate of a kernel generator
P ∈ E of order 2 with P ̸= (0 : 1), and outputs the codomain curve E′ of the 2-isogeny of kernel ⟨P ⟩
represented by the projective Montgomery coefficient (A′

24 : C
′
24).

• TwoIsogenyEval (Algorithm 8.21) takes as input the projective x-coordinates of a kernel generator P ∈
E of order 2 with P ̸= (0 : 1) and of a point Q ∈ E, and outputs the projective x-coordinate of the
image Q′ ∈ E′ of Q under the isogeny computed by TwoIsogenyCodomain.

• TwoIsogenyCodomainSingular (Algorithm 8.22) andTwoIsogenyEvalSingular (Algorithm 8.23) are equiv-
alent to TwoIsogenyCodomain and TwoIsogenyEval for the case that P = (0 : 1).

• FourIsogenyCodomain (Algorithm 8.24) takes as input the projective x-coordinate of a kernel generator
P ∈ E of order 4 with [2]P ̸= (0 : 1), and outputs the codomain curve E′ of the 4-isogeny of kernel
⟨P ⟩ represented by the projective Montgomery coefficient (A′

24 : C
′
24) and constants consts needed for

FourIsogenyEval.
• FourIsogenyEval (Algorithm 8.25) takes as input the projective x-coordinate of a point Q ∈ E, and the

constants consts returned by FourIsogenyCodomain. It outputs the projective x-coordinate of the image
Q′ ∈ E′ of Q under the isogeny computed by FourIsogenyCodomain.

Using these basic operations, we can describe the following computation of a 2e-isogeny: TwoIsogenyChain
(Algorithm 8.26) takes as input the projective x-coordinate of a kernel generator P ∈ E of order 2e, the Mont-
gomery coefficient (A′

24 : C
′
24) of E, the positive integer e, and a list of points pts to be evaluated. It outputs

the codomain curve E′ of the 2e-isogeny of kernel ⟨P ⟩ represented by the projective Montgomery coefficient
(A′

24 : C
′
24), and the list of evaluated points pts′. The algorithm computes a chain of ⌊e/2⌋ isogenies of degree 4,

followed by a final 2-isogeny if e is odd, using balanced strategies.
When computing 2e-isogenies from a given point P ∈ E of order 2e, we must verify the correctness of the

order of P within the computation of the chain of isogenies. We do so by verifying we have a point of order 4
(if e > 1) or a point of order 2 (if e = 1) in the first isogeny step of the computation of this chain. Furthermore,
for honestly generated inputs, our implementation choices guarantee that the special cases of P = (0 : 1) resp.
[2]P = (0 : 1) do not occur in TwoIsogenyChain. Therefore, verification rejects signatures that lead to these cases.
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We further compute small chains of 2-isogenies that can include the special case of a kernel generator P =
(0 : 1) only during signing. Due to the small length e, we use a naive implementation without strategies, as shown
in TwoIsogenyChainSmall (Algorithm 8.27).

Algorithm 8.20 TwoIsogenyCodomain(P )

Input: Projective point P = (XP : ZP ) ∈ E of order 2 with P ̸= (0 : 1).
Output: The coefficient (A′

24 : C
′
24) corresponding to the image curve E′ := E/⟨P ⟩ under the 2-isogeny.

1: A′
24 ← X2

P

2: C ′
24 ← Z2

P

3: A′
24 ← C ′

24 −A′
24

4: return (A′
24 : C

′
24)

Algorithm 8.21 TwoIsogenyEval(P,Q)

Input: Projective point P = (XP : ZP ) of order 2 with P ̸= (0 : 1), and projective point Q = (XQ : ZQ) where
P,Q ∈ E.

Output: Projective point Q′ = (XQ′ : ZQ′) ∈ E′ corresponding to the image of Q under the 2-isogeny defined
by P .

1: t0 ← XP + ZP
2: t1 ← XP − ZP
3: t2 ← XQ + ZQ
4: t3 ← XQ − ZQ
5: t0 ← t0 · t3
6: t1 ← t1 · t2
7: t2 ← t0 + t1
8: t3 ← t0 − t1
9: XQ′ ← XQ · t2

10: ZQ′ ← ZQ · t3
11: return (XQ′ : ZQ′)

Algorithm 8.22 TwoIsogenyCodomainSingular((A24 : C24))

Input: Montgomery coefficient (A24 : C24) of the curve E.
Output: The coefficients (A′

24 : C
′
24) corresponding to the image curve E′ := E/⟨P ⟩ under the 2-isogeny with

P = (0 : 1), and constants consts needed for TwoIsogenyEvalSingular.
1: t0 ← A24 +A24

2: t0 ← t0 − C24

3: t0 ← t0 + t0
4: t1 ← C−1

24

5: t0 ← t0 · t1
6: c1 ← t0
7: A′

24 ← t0 + t0
8: t0 ← t20
9: t0 ← t0 − 4

10: t0 ←
√
t0

11: c1 ← −t0
12: C ′

24 ← t0 + t0
13: A′

24 ← A′
24 + C ′

24

14: C ′
24 ← C ′

24 + C ′
24

15: consts← (c0, c1)
16: return (A′

24 : C
′
24), consts
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Algorithm 8.23 TwoIsogenyEvalSingular(Q, consts)

Input: Projective point Q = (XQ : ZQ) where Q ∈ E, constants consts returned by
TwoIsogenyCodomainSingular.

Output: Projective point Q′ = (XQ′ : ZQ′) ∈ E′ corresponding to the image of Q under the 2-isogeny defined
by P = (0 : 1).

1: c0, c1 ← consts

2: t0 ← XQ · ZQ
3: t1 ← c0 · ZQ
4: t1 ← t1 +XQ

5: t1 ← t1 ·XQ

6: XQ′ ← Z2
Q

7: XQ′ ← XQ′ + t1
8: ZQ′ ← t0 · c1
9: return (XQ′ : ZQ′)

Algorithm 8.24 FourIsogenyCodomain(P )

Input: Projective point P = (XP : ZP ) ∈ E of order 4 such that [2]P ̸= (0 : 1).
Output: The coefficient (A′

24 : C
′
24) corresponding to the image curve E′ := E/⟨P ⟩ under the 4-isogeny, and

constants consts needed for FourIsogenyEval.
1: c0 ← Z2

P

2: c1 ← XP − ZP
3: c2 ← XP + ZP
4: t0 ← X2

P

5: t3 ← c0 + t0
6: t4 ← c0 − t0
7: A′

24 ← t3 · t4
8: C ′

24 ← c20
9: c0 ← c0 + c0

10: c0 ← c0 + c0
11: consts← (c0, c1, c2)
12: return (A′

24 : C
′
24), consts

Algorithm 8.25 FourIsogenyEval(Q, consts)

Input: Projective pointQ = (XQ : ZQ) whereQ ∈ E, and constants consts returned by FourIsogenyCodomain.
Output: Projective point Q′ = (XQ′ : ZQ′) ∈ E′ corresponding to the image of Q under the 4-isogeny defined

by P .
1: c0, c1, c2 ← consts

2: t0 ← XQ + ZQ
3: t1 ← XQ − ZQ
4: XQ′ ← t0 · c1
5: ZQ′ ← t1 · c2
6: t0 ← t0 · t1
7: t0 ← t0 · c0
8: t1 ← XQ′ + ZQ′

9: ZQ′ ← XQ′ − ZQ′

10: t1 ← t21
11: ZQ′ ← Z2

Q′

12: XQ′ ← t0 + t1
13: t0 ← t0 − ZQ′

14: XQ′ ← XQ′ · t1
15: ZQ′ ← ZQ′ · t0
16: return (XQ′ : ZQ′)
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Algorithm 8.26 TwoIsogenyChain(P, (A24 : C24), e, pts)

Input: Projective point P = (XP : ZP ) ∈ E of order 2e, Montgomery coefficient (A24 : C24) of the curve E, a
positive integer e, a list of points pts to be evaluated.

Output: The coefficient (A′
24 : C

′
24) corresponding to the image curve E′ := E/⟨P ⟩ under the 2e-isogeny, list of

evaluated points pts′.
1: (A′

24 : C ′
24)← (A24 : C24)

2: Initialize a list strat_pts← [P ]
3: Initialize a list orders← [e]
4: k ← 0
5: for j from 0 up to ⌊e/2⌋ − 1 do // Chain of 4-isogenies
6: while orders[k] ̸= 2 do
7: k ← k + 1
8: n← ⌊orders[k − 1]/4⌋ · 2 + (orders[k − 1] (mod 2))
9: orders[k]← orders[k − 1]− n

10: strat_pts[k]← strat_pts[k − 1]
11: for i from 0 up to n− 1 do
12: strat_pts[k]← xDBL(strat_pts[k], (A24 : C24))

13: if j = 0 then // Input point validation
14: K ← strat_pts[k]
15: if [2]K = 0E or [4]K ̸= 0E then
16: raise Exception: (“TwoIsogenyChain failed: wrong point order”)
17: if [2]K = (0 : 1) then
18: raise Exception: (“TwoIsogenyChain failed: unexpected singular 4-isogeny”)
19: ((A′

24 : C
′
24), consts)← FourIsogenyCodomain(K)

20: strat_pts← [FourIsogenyEval(Q, consts) | Q ∈ strat_pts]
21: orders← [m− 2 | m ∈ orders]
22: k ← k − 1
23: pts← [FourIsogenyEval(Q, consts) | Q ∈ pts]

24: if e (mod 2) = 1 then // Final 2-isogeny if e is odd
25: K ← strat_pts[0]
26: if e = 1 then // Input point validation.
27: if K = 0E or [2]K ̸= 0E then
28: raise Exception: (“TwoIsogenyChain failed: wrong point order”)
29: if K = (0 : 1) then
30: raise Exception: (“TwoIsogenyChain failed: unexpected singular 2-isogeny”)
31: (A′

24 : C
′
24)← TwoIsogenyCodomain(K)

32: pts← [TwoIsogenyEval(Q,K) | Q ∈ pts]

33: return (A′
24 : C

′
24), pts
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Algorithm 8.27 TwoIsogenyChainSmall(P, (A24 : C24), e, pts, cond)

Input: Projective point P = (XP : ZP ) ∈ E of order 2e, Montgomery coefficient (A24 : C24) of the curve E, a
positive integer e, a list of points pts to be evaluated, a boolean cond signifying if the function is called during
signing or verifying.

Output: The coefficient (A′
24 : C ′

24) corresponding to the image curve E′ := E/⟨P ⟩ under the 2e-isogeny, list of
evaluated points pts′

1: (A′
24 : C ′

24)← (A24 : C24)
2: for i from 0 up to e− 1 do
3: K ← P
4: for j from 0 up to e− i− 2 do
5: K ← xDBL(P, (A24 : C24))

6: if i = 0 then
7: if [2]K ̸= 0E then
8: raise Exception: (“TwoIsogenyChainSmall failed: wrong order”) // Can only occur during verification
9: if K = (0 : 1) then

10: if cond = true then // Function called during signing
11: ((A′

24 : C ′
24), consts)← TwoIsogenyCodomainSingular((A′

24 : C ′
24))

12: P ← TwoIsogenyEvalSingular(P, consts)
13: pts← [TwoIsogenyEvalSingular(Q, consts) | Q ∈ pts]
14: else // Function called during verification.
15: raise Exception: (“TwoIsogenyChainSmall failed: unexpected singular 2-isogeny”)
16: else
17: (A′

24 : C ′
24)← TwoIsogenyCodomain(K)

18: P ← TwoIsogenyEval(K,P )
19: pts← [TwoIsogenyEval(K,Q) | Q ∈ pts]

20: return (A′
24 : C

′
24), pts

8.5. Theta coordinates
We now depict how two-dimensional isogenies of degree 2 (i.e., (2, 2)-isogenies) are implemented using theta
coordinates of level 2. This implementation is built upon the mathematical insights from [CDLR25; DMPR24].
For each algorithm, we give its cost in terms of squarings, multiplications, inversions, and additions over the base
field Fp2 , denoted S, M, I, and a, respectively.

8.5.1. Theta coordinates of level 2

For efficiency reasons, we do not use the Jacobian model for arithmetic operations on PPAS and instead use theta
coordinates. This coordinate system can be seen as a generalization of x-only arithmetic, where the x-coordinate
is used for efficient arithmetic on Montgomery curves. In this section, we detail how theta coordinates are defined
on Montgomery curves and on PPAS.

8.5.1.1. On Montgomery curves. Let E be a Montgomery curve defined over Fq by the equation By2 = x3 +
Ax2 + x with A,B ∈ Fq . As mentioned in Section 8.2.1, we use x-only or (X : Z)-only arithmetic. Theta
coordinates of level 2, denoted by (θ0 : θ1), are alternative projective coordinates to (X : Z)-coordinates. They
also determine points up to sign. A system of theta coordinates (of level 2) on E is fully determined by the theta
null point (a : b) whose coordinates are called the theta constants.

The theta null point (a : b) is determined by a basis (T ′
1, T

′
2) ofE[4], where T ′

1 = (−1 : 1) and T ′
2 = (r : s) in

(X : Z)-coordinates: (a : b) = (r+ s : r− s). Given the theta null point (a : b), we obtain change of coordinates
formulas between Montgomery (X : Z)-coordinates and theta coordinates:

(X : Z) −→ (θ0 : θ1) = (a(X − Z) : b(X + Z))
(X : Z) = (aθ1 + bθ0 : aθ1 − bθ0) ←− (θ0 : θ1),

using the convention that 0E = (1 : 0) in (X : Z)-coordinates. Hence, such a basis (T ′
1, T

′
2) of E[4] is sufficient

to determine a system of theta coordinates (of level 2) on E, and different bases may generate different systems
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of theta coordinates. Assuming we have computed the theta null point (a : b), we depict the change of coordinate
procedure in Algorithm 8.28.

Algorithm 8.28 MontgomeryToTheta(P, 0)

Input: A point P := (X : Z) in Montgomery coordinates, and theta null point 0 := (a : b).
Output: Point P in theta coordinates (θ0 : θ1).

1: θ0 ← X − Z
2: θ0 ← a · θ0
3: θ1 ← X + Z
4: θ1 ← b · θ1
5: return (θ0 : θ1) // Total cost: 2M+ 2a

8.5.1.2. On principally polarized abelian surfaces. LetA be a PPAS defined over Fq . A system of theta coordi-
nates (of level 2) on A consists of projective coordinates (x : y : z : w) (possibly defined over an extension of Fq).
Similarly to the elliptic-curve case, if A is a Jacobian, the coordinates (x : y : z : w) determine points up to sign.
If A = E1 × E2 is a product of elliptic curves, then (x : y : z : w) determines a pair of elliptic points (±P,±Q)
up to sign, component-wise, and thus represents up to four points of the product surface.

As before, a system of theta coordinates (of level 2) on the PPASA, along withA itself, is fully determined by
the theta null point (a : b : c : d) := (x(0) : y(0) : z(0) : w(0)). There exist different systems of theta coordinates
on the same PPAS and appropriate change of coordinates formulas [Dar24, Theorem 12]. In the algorithms that
follow, we fix a choice of theta coordinate system, following [DMPR24].

8.5.1.3. Product theta coordinates. Let A := E1 × E2 be a product of (Montgomery) elliptic curves, each
with their own system of theta coordinates (of level 2), say (θ0 : θ1) and (θ′0 : θ′1) respectively, as defined in
Section 8.5.1.1. We define the product theta coordinates on A by:

(x : y : z : w) := (θ0θ
′
0 : θ1θ

′
0 : θ0θ

′
1 : θ1θ

′
1).

Not all systems of theta coordinates on A are product theta coordinates. When computing a gluing isogeny Φ1 :
E1×E2 −→ A1, we may have to change coordinates from a product to a non-product system of theta coordinates
(see Algorithm 8.38). Similarly, when we compute a splitting isogeny Φe : Ae−1 −→ E3×E4, the system of theta
coordinates on the codomain E3 × E4 may not be of product form, and so we may have to compute a change of
coordinates to express image points component-wise in E3 × E4 (see Algorithm 8.43).

8.5.2. Doubling formulas using theta coordinates

We consider a PPAS A with a system of theta coordinates of level 2 induced by the theta null point (a : b : c : d).
We introduce the Hadamard and the squaring operators acting on theta-coordinates as follows:

H(x, y, z, w) := (x+ y + z + w, x− y + z − w, x+ y − z − w, x− y − z + w),

S(x, y, z, w) := (x2, y2, z2, w2).

which cost 8a and 4S, respectively (using recursive formulae for the Hadamard operator). The Hadamard operator
maps theta coordinates to another system of theta coordinates called dual theta coordinates. This system of theta
coordinates is determined by the dual theta null point (a′ : b′ : c′ : d′) with a′, b′, c′, d′ := H(a, b, c, d). A level 2
theta null point encodes a canonical 2-isogeny A→ B. We will call the dual of the theta null point of B the dual
isogeneous theta null point, and denote its coordinates by (α : β : γ : δ). We have (α2 : β2 : γ2 : δ2) = H(a2 :
b2 : c2 : d2).

Given a pointP = (x : y : z : w) expressed in theta coordinates,ThetaDBL given in Algorithm 8.30 describes
how to compute [2]P . ThetaDBL requires auxiliary constants as input, which depend only on the theta null point.
The precomputation of these constants is done by the algorithm ThetaPrecomp, as described in Algorithm 8.29.

For the rest of this section, for clarity of exposition we will denote the application of ThetaDBL to a point P as
[2]P (where one should assume that the constants consts needed are accessible, e.g., by applying ThetaPrecomp
or as an output of the isogeny algorithms).



8.5. THETA COORDINATES 71

Algorithm 8.29 ThetaPrecomp(0A)

Input: Theta null point 0A := (a : b : c : d), and optionally the dual isogeneous theta null point 0′A := (α : β :
γ : δ).

Output: Auxiliary constants consts := {abc, abd, acd, bcd, α2β2γ2, α2β2δ2, α2γ2δ2, β2γ2δ2}.
1: if 0′A then
2: (α2, β2, γ2, δ2)← S(α, β, γ, δ)
3: else
4: (α2, β2, γ2, δ2)← H ◦ S(a, b, c, d)
5: t1 ← α2 · β2

6: t2 ← γ2 · δ2
7: α2β2γ2 ← t1 · γ2
8: α2β2δ2 ← t1 · δ2
9: α2γ2δ2 ← t2 · α2

10: β2γ2δ2 ← t2 · β2

11: t1 ← a · b
12: t2 ← c · d
13: abc← t1 · c
14: abd← t1 · d
15: acd← t2 · a
16: bcd← t2 · b
17: consts← {abc, abd, acd, bcd, α2β2γ2, α2β2δ2, α2γ2δ2, β2γ2δ2}
18: return consts // Total cost: 4S+ 12M(+8a)

Algorithm 8.30 ThetaDBL(P, consts)

Input: The theta coordinates of P on A with theta null point 0A := (a : b : c : d), and the auxiliary constants
consts := ThetaPrecomp(0A).

Output: The theta coordinates of the point [2]P .
1: xP , yP , zP , wP ← P
2: c1, c2, c3, c4, c5, c6, c7, c8 ← consts

3: X2P , Y2P , Z2P ,W2P ← S ◦H ◦ S(xP , yP , zP , wP )
4: X2P ← X2P · c8
5: Y2P ← Y2P · c7
6: Z2P ← Z2P · c6
7: W2P ←W2P · c5
8: X2P , Y2P , Z2P ,W2P ← H(X2P , Y2P , Z2P ,W2P )
9: X2P ← X2P · c4

10: Y2P ← Y2P · c3
11: Z2P ← Z2P · c2
12: W2P ←W2P · c1
13: return (X2P : Y2P : Z2P :W2P ) // Total cost: 8S+ 8M+ 16a

8.5.3. Generic (2, 2)-isogeny computation

We first explain how to compute a generic (2, 2)-isogeny Φ : A −→ B given torsion points lying above ker(Φ).
We say that two points T1, T2 ∈ A[2k], for some k > 1, lie above the kernel of a (2, 2)-isogeny Φ if ker(Φ) =
⟨[2k−1]T1⟩ ⊕ ⟨[2k−1]T2⟩. We explain in Section 2.4.1 why we can assume such points are accessible. We assume
that ker(Φ) satisfies a compatibility condition with the system of theta coordinates onA for the following formulas
to work. When working with a chain of (2, 2)-isogenies, it will be sufficient to ensure this compatibility condition
is satisfied at the start of the chain, as this will propagate along the chain. The reader may refer to [DMPR24,
Sections 2.3 and 4] for more details on this.

8.5.3.1. With isotropic 8-torsion lying above the kernel. Assume we know the theta coordinates of two points
T ′′
1 , T

′′
2 ∈ A[8] of order 8 that are isotropic, namely e8(T ′′

1 , T
′′
2 ) = 1, and such that ker(Φ) = ⟨[4]T ′′

1 ⟩ ⊕ ⟨[4]T ′′
2 ⟩.

Using the algorithm GenericCodomainWith8Torsion (given in Algorithm 8.31) we can compute the theta null
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point (a2 : b2 : c2 : d2) of the codomain B along with its dual (α : β : γ : δ) and the projective inverse
(α−1 : β−1 : γ−1 : δ−1). Note that in the general case, we expect αβγδ ̸= 0, indeed otherwise A would
correspond to a product of elliptic curves. As such, we assume this in GenericCodomainWith8Torsion. This data
is enough to determine the isogeny Φ. In particular, (α−1 : β−1 : γ−1 : δ−1) can be used to evaluate Φ on points
(see Algorithm 8.35). The theta null point of B and its dual are not used for the evaluation but are useful for the
doubling formulas.

There are two failures that can occur during the computation of a chain of (2, 2)-isogenies with repeated use
of the algorithm GenericCodomainWith8Torsion.

The codomain of all (2, 2)-isogenies except for the last is a product of elliptic curves (i.e., the isogeny chain
splits in the middle). We must check that, at each step (except the last), the coordinates of the dual isogeneous theta
null point (α : β : γ : δ) are non-zero (see Line 5 in Algorithm 8.31). Indeed, if this is the case we are doing a
gluing isogeny, but since we checked explicitely that our first isogeny was a gluing, this means we hit a random
splitting earlier in the chain.

At each step, the input 4-torsion points [2]T ′′
1 , [2]T

′′
2 are not isotropic nor compatible with the theta structure.

In practice, we do this by checking that the image of the 8-torsion points under the isogeny Φ (namely P,Q defined
in Lines 18 and 19) are of the form (x : x : y : y) and (z : w : z : w), respectively. This ensures that:

• They are of 4-torsion;
• They are above the correct 2-torsion points on the codomain (the kernel of the next isogeny in the chain);
• They are compatible with the theta structure on the codomain.

Note that this ensures the kernel of the next isogeny is isotropic and compatible with the theta structure, and so we
do not need the check at the last isogeny of the chain. We depict this check in the algorithm CheckIsotropic.

To bootstrap these checks, for our very first gluing kernel we do the following check on the basis [4]T ′′
1 =

(P1, Q1), [4]T
′′
2 = (P2, Q2) (see Line 1 of Algorithm 8.37). We check that all points P1, Q1, P2, Q2 are not 0, and

thatP1 ̸= Q1, P2 ̸= Q2, this ensures that our kernel is not diagonal and isotropic. We also note that Algorithm 8.37
ensures that our points of 4-torsion [2]T ′′

1 , [2]T
′′
2 are compatible with our initial theta structure.

As discussed in Chapter 9, heuristically the probability of the first failure occurring is O(1/p), and therefore
we choose to forgo performing these checks during signing. We remark that, due to this, the checks are not required
in GenericCodomainWith4Torsion or GenericCodomain, as these are only run during signing.

Also, we can ignore the isotropy checks for signing, because we control the kernels in the signing procedure.
However, they must be performed during verification to ensure that the signature has not been malformed.

8.5.3.2. With isotropic 4-torsion lying above the kernel. When we cannot access 8-torsion points lying above
ker(Φ) but only 4-torsion points T ′

1, T
′
2 such that ker(Φ) = ⟨[2]T ′

1, [2]T
′
2⟩, we can still compute Φ using the

algorithm GenericCodomainWith4Torsion given by Algorithm 8.33. It only requires T ′
1 and the theta null point

of A. However, it is much more costly than GenericCodomainWith8Torsion as it involves two square roots.

8.5.3.3. With kernel generators only. When we only know generators T1, T2 of ker(Φ), we can compute Φ with
GenericCodomain given the theta null point ofA only at the expense of three square roots. Interestingly, due to the
compatibility condition of ker(Φ) with our system of theta coordinates, the points T1 and T2 are not needed for the
computation. We refer to Algorithm 8.34, where again we assume αβγδ ̸= 0.

8.5.4. Generic (2, 2)-isogeny evaluation

Assume we have computed the codomain of a (2, 2)-isogeny Φ : A −→ B with GenericCodomainWith8Torsion,
GenericCodomainWith4Torsion or GenericCodomain. Namely, we have the theta null point 0B of B, its dual
(α : β : γ : δ) and the dual projective inverse (α−1 : β−1 : γ−1 : δ−1). We are now able to evaluate Φ at a point
P ∈ A using only the theta coordinates of P and (α−1 : β−1 : γ−1 : δ−1) with GenericEval. We describe this in
Algorithm 8.35.

8.5.5. Gluing (2, 2)-isogeny computation

We now focus on a gluing (2, 2)-isogeny Φ : E1 × E2 → A, where E1, E2 are elliptic curves and A is a PPAS.
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Algorithm 8.31 GenericCodomainWith8Torsion(T ′′
1 , T

′′
2 )

Input: Theta coordinates of T ′′
1 and T ′′

2 , such that ker(Φ) = ⟨[4]T ′′
1 ⟩ ⊕ ⟨[4]T ′′

2 ⟩.
Output: Dual isogeneous theta null point (α : β : γ : δ), the inverse of the dual isogeneous theta null point

(α−1 : β−1 : γ−1 : δ−1), and the theta null point 0B on B. // Case α · β · γ · δ ̸= 0.
1: xT ′′

1
, yT ′′

1
, zT ′′

1
, wT ′′

1
← T ′′

1

2: xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
← T ′′

2

3: (xα, xβ, yγ, yδ)← H ◦ S(xT ′′
1
, yT ′′

1
, zT ′′

1
, wT ′′

1
)

4: (zα,wβ, zγ, wδ)← H ◦ S(xT ′′
2
, yT ′′

2
, zT ′′

2
, wT ′′

2
)

5: if 0 ∈ {xα, xβ, zα,wβ, zγ, wδ} then
6: raise Exception: (“GenericCodomainWith8Torsion failed: unexpected splitting”) // Check only done in

verification.
7: xαwβ ← xα · wβ
8: zαxβ ← zα · xβ
9: α← zα · xαwβ

10: β ← wβ · zαxβ
11: γ ← zγ · xαwβ
12: δ ← wδ · zαxβ
13: zγwδ ← zγ · wδ
14: α−1 ← xβ · zγwδ
15: β−1 ← xα · zγwδ
16: γ−1 ← δ
17: δ−1 ← γ
18: P ← (xα : xβ : yγ : yδ)
19: Q← (zα : wβ : zγ : wδ)
20: I ← (α−1 : β−1 : γ−1 : δ−1)
21: if not CheckIsotropic(P,Q, I) then
22: raise Exception: (“GenericCodomainWith8Torsion failed: P,Q not isotropic”) // Check only done in

verification.
23: (a2, b2, c2, d2)← H(α, β, γ, δ)
24: 0B ← (a2 : b2 : c2 : d2)
25: return (α : β : γ : δ), (α−1 : β−1 : γ−1 : δ−1), 0B // Total cost (without checks): 8S+ 9M+ 24a

The first step is to apply a change of basis matrix to move points P = (P1, P2) on E1 ×E2, where each Pi is
in theta coordinates (by applying MontgomeryToTheta) to (non-product) theta coordinates corresponding to our
choice of theta structure, as discussed briefly in Section 8.5.1.3. This is given in ProductToTheta.

InGluingCodomain (see Algorithm 8.39) we present the algorithm for computing the codomainA of the gluing
(2, 2)-isogeny Φ : E1 × E2 → A. Explicitly, due to the way we set up our theta structure in Algorithm 8.37, we
will always have δ = 0 (otherwise, gluing has failed, for instance because A is a product, and we abort). On input
8-torsion points T ′′

1 , T
′′
2 lying above the kernel generators, GluingCodomain outputs the dual isogeneous theta point

(α : β : γ : 0), the “inverse” of the dual isogeneous theta null point (α−1 : β−1 : γ−1 : 0), and the theta null point
(a2 : b2 : c2 : d2) on A.

As in the generic case, there are two failures that can occur during gluing. First, the algorithm we present
assumes that for points on the dual surface (i.e., after applying H ◦ S) the final coordinate is zero. This check
is performed in Line 9 of GluingCodomain. On the other hand, we must check that the other projective factors
of such points are non-zero: see Line 11. Furthermore, analogously to the generic case, we need to ensure that
the input points T ′′

1 , T
′′
2 are isotropic and compatiblew with the theta structure. This is handled in Line 22 of

GluingCodomain.

8.5.6. Gluing (2, 2)-isogeny evaluation

Assume that we have computed the codomainA of a gluing (2, 2)-isogenyΦ : E1×E2 −→ AwithGluingCodomain
(again, due to the theta structure set-up in Algorithm 8.37, we have that δ = 0). Namely, we have the theta null point
(a2 : b2 : c2 : d2) of A, its dual (α : β : γ : 0), the dual projective “inverse” (α−1, β−1 : γ−1 : 0) and (x : x : y : y)
the dual of theta point Φ(T ′′

1 ) on A. We are now able to evaluate Φ at a point P ∈ E1 × E2 using the GluingEval
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Algorithm 8.32 CheckIsotropic(P,Q, I)

Input: Theta coordinates of P := H ◦ S(T ′′
1 ) and Q := H ◦ S(T ′′

2 ), where points T ′′
1 , T

′′
2 are as in

GenericCodomainWith8Torsion, and theta coordinates of I := (α−1 : β−1 : γ−1 : δ−1).
Output: A boolean bool indicating whether the 4-torsion points Φ(T ′′

1 ),Φ(T
′′
2 ) are isotropic (i.e.,

e4(Φ(T
′′
1 ),Φ(T

′′
2 )) = 1).

1: xP , yP , zP , wP ← P
2: xQ, yQ, zQ, wQ ← Q
3: α−1, β−1, γ−1, δ−1 ← I
4: t1 ← xP · α−1

5: t2 ← yP · β−1

6: if t1 ̸= t2 then
7: return false
8: t1 ← zP · γ−1

9: t2 ← tP · δ−1

10: if t1 ̸= t2 then
11: return false
12: t1 ← xQ · α−1

13: t2 ← zQ · γ−1

14: if t1 ̸= t2 then
15: return false
16: t1 ← yQ · β−1

17: t2 ← tQ · δ−1

18: if t1 ̸= t2 then
19: return false
20: return true // Total cost: at most 8M

(see Algorithm 8.40) method. We also use another faster method GluingEvalSpecial (see Algorithm 8.41) used
when our point P is of the form P = (P1, 0) or (0, P2).

GluingEval takes as input the point P ∈ E1×E2, the 8-torsion point T ′′
1 lying above a generator of the kernel

of Φ, together with the point J = (x : x : y : y), the dual of the theta point Φ(T ′′
1 ), and the change-of-basis matrix

that was computed during GluingCodomain, and returns the theta point Φ(P ). It is detailed in Algorithm 8.40.
GluingEvalSpecial takes as input a point P ∈ E1 × E2 of the form (P1, 0) or (0, P2) together with the point

I = (α−1 : β−1 : γ−1 : 0), the “inverse” of the dual isogeneous theta null point over A and returns the theta point
Φ(P ). It uses the fact that, thanks to Algorithm 8.37, Wφ(P ) = 0. It is detailed in Algorithm 8.41.

8.5.7. Splitting change of coordinates

We now look at how to compute a splitting (2, 2)-isogeny Φ : A → E1 × E2, where E1, E2 are elliptic curves
and A is a PPAS. Such an isogeny is computed in two steps: (1) computing a ‘generic’ (2, 2)-isogeny using
GenericCodomainWith8Torsion, GenericCodomainWith4Torsion, or GenericCodomain to obtain an isogeny Φ :
A → B where B ∼= E1 × E2; (2) computing the isomorphism whose action on 0B gives back the product theta
structureE1×E2. We give an algorithm, called SplittingIsomorphism, for the latter step below in Algorithm 8.43.
It calls a sub-algorithm GetIndexSplitting to determine the index (i, j) such that Ui,j(0) = 0, where Ui,j are level
4 theta coordinates. To compute the value of Ui,j , we require a function χ.1 For our purposes, it suffices to know
the output of χ on indices (i, j) ∈ {0, 1, 2, 3}2:

χ(i, j) :=

{
1, if (i, j) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (2, 0), (2, 1), (3, 0), (3, 3)}
−1, if (i, j) ∈ {(1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2)}

.

For more details on the theory and correctness of the splitting algorithm, we refer to [DMPR24]. In the case of
Algorithm 8.48, thanks to the extra torsion points above our kernel, the theta structure on the codomain is set up
so that we are always in the case of (i, j) = (00, 11) of Algorithm 8.43.

Conversely to gluing, after computing a splitting (2, 2)-isogeny Φ : A→ B such that B ∼= E1 ×E2, we want
to recover the Montgomery coefficients of E1, E2 from the theta null point 0B of B. We depict how this is done in

1We use the notation χ as it is a character.
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Algorithm 8.33 GenericCodomainWith4Torsion(T ′
1, 0A)

Input: Theta coordinates of T ′
1 of order 4 such that [2]T ′

1 ∈ ker(Φ) and the theta null point 0A := (a : b : c : d)
of A.

Output: Dual isogeneous theta null point (α : β : γ : δ), the inverse of the dual isogeneous theta null point
(α−1 : β−1 : γ−1 : δ−1), and the theta null point 0B on B. // Case α · β · γ · δ ̸= 0.

1: (xαβ, _, xγδ, _)← H ◦ S(xT ′
1
, yT ′

1
, zT ′

1
, wT ′

1
)

2: (α2, β2, γ2, δ2)← H ◦ S(a, b, c, d)
3: αβ ← SquareRoot(α2 · β2)
4: αγ ← SquareRoot(α2 · γ2)
5: β ← αβ · αγ
6: δ−1 ← β · xγδ
7: β ← β · xαβ
8: δ ← xγδ · αβ · α2

9: α← xαβ · α2

10: γ ← α · γ2
11: α← α · αγ
12: α−1 ← xαβ · δ2
13: γ−1 ← α−1 · β2

14: α−1 ← α−1 · γ2
15: β−1 ← α−1 · αβ
16: α−1 ← α−1 · β2

17: γ−1 ← γ−1 · αγ
18: δ−1 ← δ−1 · β2

19: (a2, b2, c2, d2)← H(α, β, γ, δ)
20: 0B ← (a2, b2, c2, d2)
21: return (α, β, γ, δ), (α−1, β−1, γ−1, δ−1), 0B // Total cost: 8S+ 17M+ 24a+ 2Sqrt

Algorithm 8.34 GenericCodomain(0A)

Input: The theta constants 0A := (a : b : c : d) of A.
Output: Dual isogeneous theta null point (α : β : γ : δ), the inverse of the dual isogeneous theta null point

(α−1 : β−1 : γ−1 : δ−1), and the theta null point 0B on B. // Case α · β · γ · δ ̸= 0.
1: (α2, β2, γ2, δ2)← H ◦ S(a, b, c, d)
2: α← α2

3: β ← α2 · β2

4: γ ← α2 · γ2
5: δ ← α2 · δ2
6: β ← SquareRoot(β)
7: γ ← SquareRoot(γ)
8: δ ← SquareRoot(δ)
9: α−1 ← γ2 · δ2

10: β−1 ← α−1 · β
11: α−1 ← α−1 · β2

12: γ−1 ← δ2 · β2 · γ
13: δ−1 ← γ2 · β2 · δ
14: (a2, b2, c2, d2)← H(α, β, γ, δ)
15: 0B ← (a2, b2, c2, d2)
16: return (α, β, γ, δ), (α−1, β−1, γ−1, δ−1), 0B // Total cost: 4S+ 10M+ 24a+ 3Sqrt

ThetaToProduct, which follows the discussion in Section 8.5.1.3. We also need to convert our points from theta
product coordinates to Montgomery coordinates, which is done in Algorithm 8.46.

The Montgomery coordinates obtained after the computation of the entire (2, 2)-isogeny chain may still reveal
some information about the one-dimensional isogenies underlying the isogeny matrix. To avoid any potential
leakage, during signing, the matrix output of SplittingIsomorphism is randomized using the following strategy.
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Algorithm 8.35 GenericEval(P, I)

Input: Theta coordinates ofP and the inverse of the dual isogeneous theta null point I := (α−1 : β−1 : γ−1 : δ−1)
on B.

Output: Theta coordinates of P ′ := Φ(P ). // Case β · γ · δ ̸= 0
1: xP , yP , zP , wP ← P
2: α−1, β−1, γ−1, δ−1 ← I
3: (XP , YP , ZP ,WP )← H ◦ S(xP , yP , zP , wP )
4: X ′ ← α−1XP

5: Y ′ ← β−1 · YP
6: Z ′ ← γ−1 · ZP
7: W ′ ← δ−1 ·WP

8: xP ′ , yP ′ , zP ′ , wP ′ ← H(X ′, Y ′, Z ′,W ′)
9: P ′ ← (xP ′ : yP ′ : zP ′ : wP ′)

10: return P ′ // Total cost: 4S+ 4M+ 16a

Algorithm 8.36 ActionByTranslation(P,Q)

Input: Four-torsion points P = (P1, P2) and Q = (Q1, Q2) on E1 × E2.
Output: Array mats containing 2×2 matrices giving the action-of-translation by P1, Q1 ∈ E1 and P2, Q2 ∈ E2.

1: P ′ := (P ′
1, P

′
2)← [2]P // Cost: 4S+ 8M+ 8a using xDBL

2: Q′ := (Q′
1, Q

′
2)← [2]Q // Cost: 4S+ 8M+ 8a using xDBL

3: Write P ′
i = (X

(P )
i : Z

(P )
i ) and Q′

i = (X
(Q)
i : Z

(Q)
i ) for i = 1, 2

4: Write Pi = (U
(P )
i :W

(P )
i ) and Qi = (U

(Q)
i :W

(Q)
i ) for i = 1, 2

5: for i from 1 up to 2 do
6: WX

(P )
i ,WZ

(P )
i , UX

(P )
i , UZ

(P )
i ←W

(P )
i · Z(P )

i ,W
(P )
i · Z(P )

i , U
(P )
i ·X(P )

i , U
(P )
i · Z(P )

i

7: δ
(Q)
i ←WX

(Q)
i − UZ(Q)

i

8: WX
(Q)
i ,WZ

(Q)
i , UX

(Q)
i , UZ

(Q)
i ←W

(Q)
i · Z(Q)

i ,W
(Q)
i · Z(Q)

i , U
(Q)
i ·X(Q)

i , U
(Q)
i · Z(Q)

i

9: δ
(Q)
i ←WX

(Q)
i − UZ(Q)

i

10: Compute the inverses of δ(P )
1 , δ

(P )
2 , δ

(Q)
1 , δ

(Q)
2 , Z

(P )
1 , Z

(P )
2 , Z

(Q)
1 , Z

(Q)
2 using batched inversions // Cost: 21M+

1I

11: Initialize array mats to store matrices
12: pts← [P,Q]
13: for i from 1 up to 2 do
14: for j from 1 up to 2 do
15: R← pts[j]

16: M0,0 ← −U (R)
i Z

(R)
i · (δ(R)

i )−1

17: M0,1 ← −W (R)
i Z

(R)
i · (δ(R)

i )−1

18: M1,0 ← U
(R)
i X

(R)
i · (δ(R)

i )−1 −X(R)
i · (Z(R)

i )−1

19: M1,1 ← −M0,0

20: M← (Mi,j)0≤i,j≤1

21: Append M to mats
22: return mats // Total cost: 8S+ 69M+ 1I+ 24a

For each Montgomery curve E, there exist six isomorphic Montgomery curves. Given a theta-null point
for E, we can obtain any of the other theta-null points corresponding to the other five isomorphic curves by ap-
plying a change of variables. For efficiency, we perform this change of variables to both the codomain curves
obtained after applying SplittingIsomorphism. Concretely, this boils down to multiplying the matrix output by
SplittingIsomorphism by one of the six precomputed change-of-variables matrices. This procedure is summarized
in RandomizedProduct.
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Algorithm 8.37 ThetaChangeOfBasis(P,Q)

Input: The points P = (P1, P2) and Q = (Q1, Q2) in the four torsion of E1 × E2 such that the kernel for the
gluing isogeny is ⟨[2]P, [2]Q⟩.

Output: The 4× 4 change of basis matrix N.
1: if P1, P2, Q1, Q2 do not have order 4 or [2]P1 = [2]P2 or 2]Q1 = [2]Q2 then
2: raise (“ThetaChangeOfBasis failed: gluing kernel is diagonal or not isotropic.”)
3: G,G′,H,H′ ← ActionByTranslation(P,Q) // Cost: 4S+ 61M+ 1I+ 16a

4: t1 ← G0,0 ·H0,0 +G0,1 ·H1,0

5: t2 ← G1,0 ·H0,0 +G1,1 ·H1,0

6: t3 ← G′
0,0 ·H′

0,0 +G′
0,1 ·H′

1,0

7: t4 ← G′
1,0 ·H′

0,0 +G′
1,1 ·H′

1,0

8: N0,0 ← G0,0 ·G′
0,0 +H0,0 ·H′

0,0 + t1 · t3 + 1
9: N0,1 ← G0,0 ·G′

1,0 +H0,0 ·H′
1,0 + t1 · t4

10: N0,2 ← G1,0 ·G′
0,0 +H1,0 ·H′

0,0 + t2 · t3
11: N0,3 ← G1,0 ·G′

1,0 +H1,0 ·H′
1,0 + t2 · t4

12: N1,0 ← H′
0,0 ·N0,0 +H′

0,1 ·N0,1

13: N1,1 ← H′
1,0 ·N0,0 +H′

1,1 ·N0,1

14: N1,2 ← H′
0,0 ·N0,2 +H′

0,1 ·N0,3

15: N1,3 ← H′
1,0 ·N0,2 +H′

1,1 ·N0,3

16: N2,0 ← G0,0 ·N0,0 +G0,1 ·N0,2

17: N2,1 ← G0,0 ·N0,1 +G0,1 ·N0,3

18: N2,2 ← G1,0 ·N0,0 +G1,1 ·N0,2

19: N2,3 ← G1,0 ·N0,1 +G1,1 ·N0,3

20: N3,0 ← G0,0 ·N1,0 +G0,1 ·N1,2

21: N3,1 ← G0,0 ·N1,1 +G0,1 ·N1,3

22: N3,2 ← G1,0 ·N1,0 +G1,1 ·N1,2

23: N3,3 ← G1,0 ·N1,1 +G1,1 ·N1,3

24: N← (Ni,j)0≤i,j≤3

25: return N // Total cost: 8S+ 113M+ 1I+ 49a

Algorithm 8.38 ProductToTheta(pts,N)

Input: List of points pts, where for P ∈ pts we have P := (P1, P2) ∈ E1 × E2, and N the change-of-basis
matrix computed using ThetaChangeOfBasis.

Output: The corresponding point P ′ in theta coordinates on A ∼= E1 × E2.
1: eval_pts← [ ]
2: L← #pts

3: for j from 1 up to L do
4: P = (P1, P2)← pts[j]
5: Write Pi = (θ0,i : θ1,i) for i = 1, 2.
6: x← θ0,1 · θ0,2
7: y ← θ0,1 · θ1,2
8: z ← θ1,1 · θ0,2
9: w ← θ1,1 · θ1,2

10: P ′ ← N · (x : y : z : w) // Cost: at most 20M+ 12a

11: Append P ′ to eval_pts
12: return eval_pts // Total cost: + 20kM+ 12ka with k = #pts

8.5.8. Computing a (2, 2)-isogeny chain between products of elliptic curves

We are now ready to describe the computation of a chain of (2, 2)-isogenies. In Isogeny22Chain (see Algo-
rithm 8.47), we present the algorithm to compute a (2, 2)-isogeny chain between products of elliptic curves Φ :
E1×E2 → E3×E4 using a balanced strategy (adjusted to account for the expensive gluing step at the start of the
chain), on input points P,Q ∈ E1 × E2 of order 2e.
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Algorithm 8.39 GluingCodomain(T ′′
1 , T

′′
2 )

Input: 8-torsion points T ′′
1 , T

′′
2 ∈ E1 × E2, and ker(Φ) = ⟨[4]T ′′

1 ⟩ ⊕ ⟨[4]T ′′
2 ⟩.

Output: Dual isogeneous theta null point (α : β : γ : 0), the “inverse” of the dual isogeneous theta null point
(α−1 : β−1 : γ−1 : 0), the theta null point 0A on A, the dual isogeneous theta point Φ(T ′′

1 ) on A, and the
change-of-basis matrix N (re-used for point evaluation). // Case δ = 0

1: T ′
1 ← [2](T ′′

1 ) // Cost: 2S+ 4M+ 4a using xDBL

2: T ′
2 ← [2](T ′′

2 ) // Cost: 2S+ 4M+ 4a using xDBL

3: N← ThetaChangeOfBasis(T ′
1, T

′
2) // Total cost: 8S+ 113M+ 1I+ 49a

4: [P1, P2]← ProductToTheta([T ′′
1 , T

′′
2 ],N) // Total cost: 40M+ 24a

5: x1, y1, z1, t1 ← P1

6: x2, y2, z2, t2 ← P2

7: (X1, Y1, Z1, T1)← H ◦ S(x1, y1, z1, t1)
8: (X2, Y2, Z2, T2)← H ◦ S(x2, y2, z2, t2)
9: if T1 ̸= 0 or T2 ̸= 0 then

10: raise (“GluingCodomain failed: last coordinate is non-zero”)
11: if X1, X2, Y1, Z2 = 0 then
12: raise (“GluingCodomain failed: projective factors are zero”)
13: α← X1 ·X2

14: β ← Y1 ·X2

15: γ ← X1 · Z2

16: α−1 ← Y1 · Z2

17: β−1 ← γ
18: γ−1 ← β
19: x← X1 · α−1

20: y ← Z1 · γ−1

21: J ← (x : x : y : y)
22: if (Y1 · β−1 ̸= x) or (X2 · α−1 ̸= Y2 · β−1) then
23: raise Exception: (“GluingCodomain failed: [2]T ′′

1 , [2]T
′′
2 not isotropic”) // Check only done in verification.

24: (a2, b2, c2, d2)← H(α, β, γ, 0)
25: 0A ← (a2 : b2 : c2 : d2)
26: return (α : β : γ : 0), (α−1 : β−1, γ−1 : 0), 0A, J,N // Total cost (without checks): 12S+ 159M+ 1I+ 105a

Algorithm 8.40 GluingEval(P, T ′′
1 , J,N)

Input: The point P ∈ E1 × E2 and T ′′
1 a 8-torsion point such that [4]T ′′

1 ∈ ker(Φ) both in Jacobian coordinates
and the point J = (x : x : y : y), the dual of the theta point Φ(T ′′

1 ) on A, and the change-of-basis matrix N
computed during GluingCodomain.

Output: Theta coordinates of Φ(P ).
1: P1, P2 ← P
2: T1, T2 ← T ′′

1

3: x, y ← J
4: u1, v1, z1 ← ADDComponents(P1, T1, E1) // Total cost: 11M+ 5S+ 7a
5: u2, v2, z2 ← ADDComponents(P2, T2, E2) // Total cost: 11M+ 5S+ 7a
6: U ← (u1 · u2 + v1 · v2, u1 · w1, w1 · u2, w1 · w2)
7: V ← (v1 · u2 + u1 · v2, v1 · w1, w1 · v2, 0)
8: U ← N · U
9: V ← N · V

10: U ← S(U)
11: V ← S(V )
12: X±, Y±, Z±,W± ← H(U − V )
13: XΦ(P ), YΦ(P ), ZΦ(P ),WΦ(P ) ← X± · y, Y± · y, Z± · x,W± · x
14: (xΦ(P ), yΦ(P ), zΦ(P ), wΦ(P ))← H(XΦ(P ), YΦ(P ), ZΦ(P ),WΦ(P ))
15: return (xΦ(P ) : yΦ(P ) : zΦ(P ) : wΦ(P )) // Total cost: 62M+ 18S+ 50a
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Algorithm 8.41 GluingEvalSpecial(P, I,N)

Input: The point P ∈ E1×E2 of the form (P1, 0) or (0, P2), the “inverse” of the dual isogeneous theta null point
I := (α−1 : β−1 : γ−1 : 0) on A and the change-of-basis matrix N computed during GluingCodomain.

Output: Theta coordinates of Φ(P ).
1: P ← ProductToTheta(P,N) // 20M+ 12a

2: xP , yP , zP , tP ← P
3: α−1, β−1, γ−1, _← I
4: (XP , YP , ZP , 0)← H ◦ S(xP , yP , zP , wP )
5: (XΦ(P ), YΦ(P ), ZΦ(P ))← XP · α−1, YP · β−1, ZP · γ−1

6: (xΦ(P ), yΦ(P ), zΦ(P ), wΦ(P ))← H(XΦ(P ), YΦ(P ), ZΦ(P ), 0)
7: return (xΦ(P ) : yΦ(P ) : zΦ(P ) : wΦ(P )) // Total cost: 4S+ 23M

Algorithm 8.42 GetIndexSplitting(0A)

Input: Theta null point 0A of theta structure A ∼= E1 × E2.
Output: Index (i, j) such that Ui,j(0) = 0.

1: inds← {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (2, 0), (2, 1), (3, 0), (3, 3)}
2: for k from 1 up to #inds do
3: (i, j)← inds[k]

4: U ←
∑3
k=0 χ(i, k) · 0A[k] · 0A[j ⊕ k] // Here, ⊕ denotes bitwise XOR.

5: if U = 0 then
6: return (i, j)

The algorithm Isogeny22ChainWithTorsion given by Algorithm 8.48, now takes input isotropic points P,Q ∈
E1 × E2 of order 2e+2. As such, the (2, 2)-isogeny chain can be computed without square roots.

Remark 2. The first output of Isogeny22Chain or Isogeny22ChainWithTorsion, is the codomain productE3×
E4. In the context of SQIsign, E3 can always be taken to be the commitment curve. This is due to our choice
of theta structure, as well as the choice of splitting matrix output by SplittingIsomorphism. We remark that, for
example, in Chapter 4 this was implicitly assumed in Line 29 of Algorithm 4.9.
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Algorithm 8.43 SplittingIsomorphism(0A)

Input: Theta null point 0A of A ∼= E1 × E2.
Output: Isomorphism given by matrix M, whose action on 0A gives back the theta null point associated with the

product theta structure.
1: (i, j)← GetIndexSplitting(0A)
2: if (i, j) = (00, 00) then

3: M←


1

√
−1 1

√
−1

1 −
√
−1 −1

√
−1

1
√
−1 −1 −

√
−1

−1
√
−1 −1

√
−1


4: else if (i, j) = (01, 00) then

5: M←


1 1 1 1
1 −1 −1 1
1 1 −1 −1
−1 1 −1 1


6: else if (i, j) = (10, 00) then

7: M←


1 1 1 1
1 −1 1 −1
1 −1 −1 1
−1 −1 1 1


8: else if (i, j) = (11, 00) then

9: M←


1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1


10: else if (i, j) = (00, 01) then

11: M←


1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0


12: else if (i, j) = (10, 01) then

13: M←


1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1


14: else if (i, j) = (00, 10) then

15: M←


1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


16: else if (i, j) = (01, 10) then

17: M←


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


18: else if (i, j) = (00, 11) then

19: M←


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


20: else if (i, j) = (11, 11) then

21: M←


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


22: M← RandomizedProduct(M) // Only done in signing.
23: return M
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Algorithm 8.44 RandomizedProduct(M)

Input: The splitting matrix M
Output: The randomized matrix N

1: M←


(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
,

(
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

)
,

(
1 −1 −1 1
−1 −1 1 1
−1 1 −1 1
1 1 1 1

)
,

 −1
√
−1

√
−1 1√

−1 −1 1
√
−1√

−1 1 −1
√
−1

1
√
−1

√
−1 −1

 ,

 1
√
−1

√
−1 −1√

−1 1 −1
√
−1√

−1 −1 1
√
−1

−1
√
−1

√
−1 1


2: Sample a random N inM
3: N← N ·M
4: return N

Algorithm 8.45 ThetaToProduct(0A)

Input: The theta null point 0A := (a : b : c : d) of PPAS A with theta product structure.
Output: The Montgomery coefficients ofE1, E2, namely (A

(1)
24 : C

(1)
24 ) and (A

(2)
24 : C

(2)
24 ), such thatA ∼= E1×E2.

1: (a, b, c, d)← 0A
2: t1 ← ad
3: t2 ← bc
4: if t1 ̸= t2 then
5: raise (“ThetaToProduct failed: 0A does not come from a product theta structure”)
6: x← a4

7: y ← b4

8: A2 ← x+ y
9: C2 ← x− y

10: A2 ← −2A2

11: z ← c4

12: A1 ← x+ z
13: C1 ← x− z
14: A1 ← −2A1

15: if C1 = 0 or C2 = 0 then
16: raise (“ThetaToProduct failed”)
17: return (A1 : C1), (A2 : C2)

Algorithm 8.46 ThetaProductPointToMontgomery(P, 0A)

Input: A theta point P := (x : y : z : t) and the theta null point 0A := (a : b : c : d) of PPAS A with theta product
structure.

Output: The Montgomery coordinates (X(P1) : Z(P1)) and X(P2) : Z(P2) of P = (P1, P2) ∈ E1 × E2.
1: (a, b, c, d)← 0A
2: (x, y, z, t)← P
3: X1 ← a · z + c · x
4: Z1 ← a · z − c · x
5: X2 ← a · y + b · x
6: Z2 ← a · y − b · x
7: return (X1 : Z1), (X2 : Z2)
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Algorithm 8.47 Isogeny22Chain(P,Q, pts)

Input: Points P,Q ∈ E1 × E2 of order 2e, a positive integer e, and an array pts containing points on E1 × E2

with at least one point zero.
Output: The codomain E3 × E4 of the (2, 2)-isogeny chain Φ = Φe ◦ · · · ◦ Φ1 such that ker(Φ) = ⟨P,Q⟩ with

deg(Φk) = 2 for all k = 1, . . . , e, and the evaluated points [ Φ(P ) | P ∈ pts ].
1: Initialize a list strat_pts← [(P,Q)]
2: Initialize a list orders← [e− 2]
3: k ← 0
4: while orders[k] ̸= 1 do
5: k ← k + 1
6: if orders[k − 1] ≥ 16 then
7: n← ⌊orders[k − 1]/2⌋
8: else
9: n← orders[k − 1]− 1

10: (R,S)← strat_pts[k − 1]
11: for i from 0 up to n− 1 do
12: R← DBL(R,A1)
13: S ← DBL(S,A2)

14: strat_pts[k]← (R,S)
15: orders[k]← orders[k − 1]− n
16: _, I, 0A, J,N← GluingCodomain(strat_pts[k]) // Computing Φ1 : E1 × E2 → A1

17: pts← [GluingEvalSpecial(P, I,N) | P ∈ pts]
18: for i from 0 up to k − 1 do
19: strat_pts[i]← GluingEval(strat_pts[i], I, J,N)
20: orders[i]← orders[i]− 1

21: k ← k − 1
22: consts← ThetaPrecomp(0A)
23: j ← 0
24: while k ≥ 0 and orders[k] ̸= 0 do
25: j ← j + 1
26: while orders[k] ̸= 1 do
27: k ← k + 1
28: n← ⌊orders[k − 1]/2⌋
29: for i from 0 up to n− 1 do
30: strat_pts[k]← ThetaDBL(strat_pts[k − 1], consts)
31: orders[k]← orders[k − 1]− n
32: 0′A, I, 0A ← GenericCodomainWith8Torsion(strat_pts[k]) // Computing Φk : Ak−1 → Ak

33: pts← [GenericEval(P, I) | P ∈ pts]
34: consts← ThetaPrecomp(0A, 0

′
A)

35: for i from 0 up to k − 1 do
36: strat_pts[i]← GenericEval(strat_pts[i], I)
37: orders[j]← orders[j]− 1

38: k ← k − 1

39: if e ≥ 3 then
40: strat_pts[0]← GenericEval(strat_pts[0], I)
41: _, I, 0A ← GenericCodomainWith4Torsion(strat_pts[0], 0A) // Computing Φe−1 : Ae−2 → Ae−1

42: pts← [GenericEval(P, I) | P ∈ pts]
43: _, I, 0A ← GenericCodomain(0A) // Computing Φe : Ae−1 → Ae

44: pts← [GenericEval(P, I) | P ∈ pts]
45: M← SplittingIsomorphism(0A)
46: 0A ←M · 0A
47: pts← [M · P | P ∈ eval_pts]
48: (A3 : C3), (A4 : C4)← ThetaToProduct(0A)
49: pts← [ThetaProductPointToMontgomery(P, 0A) | P ∈ pts]
50: Let E3, E4 be the elliptic curves defined by Montgomery coefficients (A3 : C3), (A4 : C4)
51: return E3 × E4, pts
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Algorithm 8.48 Isogeny22ChainWithTorsion(P,Q, pts)

Input: Jacobian points P,Q ∈ E1 × E2 of order 2e+2, Montgomery coefficients A1, A2 of E1, E2 respectively,
a positive even integer e, and an array pts containing points on E1 × E2 with at least one point zero.

Output: The codomain E3 × E4 of the (2, 2)-isogeny chain Φ = Φe ◦ · · · ◦ Φ1 such that ker(Φ) = ⟨P,Q⟩ with
deg(Φk) = 2 for all k = 1, . . . , e, and the evaluated points [ Φ(P ) | P ∈ pts ].

1: Initialize a list strat_pts← [(P,Q)]
2: Initialize a list orders← [e]
3: k ← 0
4: while orders[k] ̸= 1 do
5: k ← k + 1
6: if orders[k − 1] ≥ 16 then
7: n← ⌊orders[k − 1]/2⌋
8: else
9: n← orders[k − 1]− 1

10: (R,S)← strat_pts[k − 1]
11: for i from 0 up to n− 1 do
12: R← DBL(R,A1)
13: S ← DBL(S,A2)

14: strat_pts[k]← (R,S)
15: orders[k]← orders[k − 1]− n
16: _, I, 0A, J,N← GluingCodomain(strat_pts[k]) // Computing Φ1 : E1 × E2 → A1

17: pts← [GluingEvalSpecial(P, I,N) | P ∈ pts]
18: for i from 0 up to k − 1 do
19: strat_pts[i]← GluingEval(strat_pts[i], I, J,N)
20: orders[i]← orders[i]− 1

21: k ← k − 1
22: consts← ThetaPrecomp(0A)
23: j ← 0
24: while k ≥ 0 and orders[k] ̸= 0 do
25: j ← j + 1
26: while orders[k] ̸= 1 do
27: k ← k + 1
28: n← ⌊orders[k − 1]/2⌋
29: for i from 0 up to n− 1 do
30: strat_pts[k]← ThetaDBL(strat_pts[k − 1], consts)
31: orders[k]← orders[k − 1]− n
32: 0′A, I, 0A ← GenericCodomainWith8Torsion(strat_pts[k]) // Computing Φk : Ak−1 → Ak

33: pts← [GenericEval(P, I) | P ∈ pts]
34: consts← ThetaPrecomp(0A, 0

′
A)

35: for i from 0 up to k − 1 do
36: strat_pts[i]← GenericEval(strat_pts[i], I)
37: orders[j]← orders[j]− 1

38: k ← k − 1

39: M← SplittingIsomorphism(0A)
40: 0A ←M · 0A
41: pts← [M · P | P ∈ eval_pts]
42: (A3 : C3), (A4 : C4)← ThetaToProduct(0A)
43: pts← [ThetaProductPointToMontgomery(P, 0A) | P ∈ pts]
44: Let E3, E4 be the elliptic curves defined by Montgomery coefficients (A3 : C3), (A4 : C4)
45: return E3 × E4, pts



CHAPTER 9

Heuristics and failure cases

The role of this chapter is to list and analyze possible failure cases of various algorithms involved in the
signature process of SQIsign. In particular, the goal of this chapter is to explain the heuristics behind the probability
estimates that are used to choose the parameters.

9.1. Heuristics on lattices and ideals
The termination of a few algorithms related to ideal lattices relies on mild heuristics. The first one guarantees
Algorithm LatticeSampling terminates in a constant number of steps on average:

Heuristic 9.1.1. The number of lattice points in an ellipsoid S centered at the origin is well approximated by the
number of lattice points in a parallelogram B ⊃ S multiplied by vol(S)

vol(B) .

The next one guarantees Algorithm IdealGenerator always terminates quickly:

Heuristic 9.1.2. Enumerating integer linear combinations of a quaternion ideal basis by increasing ℓ1 norm finds
a generator of the ideal in a small number of steps.

9.2. Chains of (2, 2)-isogenies
During key generation, signing, and verifying we compute several chains of isogenies of the form

E1 × E2
Φ1−−→ A1

Φ2−−→ A2 · · · Ae−2
Φe−1−−→ Ae−1

Φe−−→ E3 × E4.

The algorithms we gave in Section 8.5 are not universal and may fail in two possible ways. We argue that these
failures happen with negligible probability during an honest execution, and thus may be ignored during key gen-
eration / signing (we nevertheless catch them and restart the process). If they happen during verification, with
overwhelming probability they indicate a malicious signature and thus lead to rejection.

The first failure case happens if we encounter a splitting before the final step of a chain, i.e., if Ak has product
theta structure for 1 ≤ k < e. This failure can never happen during verification of an honest signature. To bound
the failure probability in key generation / signing, we make the following assumption:

Heuristic 9.2.1. The surfaces Ak encountered along the chains of (2, 2)-isogenies computed in SQIsign.KeyGen
and SQIsign.Sign behave like uniformly random superspecial PPAS.

The number of products of supersingular elliptic curves E1 × E2 is O(p2), and the number of superspecial
PPAS is O(p3), thus the heuristic ensures the computation of a (2, 2)-isogeny chain fails with probability Õ(p−1).

The second failure case happens, during the first gluing isogeny E1 ×E2 → A, when the base change matrix
we compute in Algorithm 8.37 is 0. This happens only when the trace of the coordinate X1 ·X2 under our kernel
is zero, where (X1 : Z1) and (X2 : Z2) are the Montgomery coordinates on E1 and E2 respectively.

Heuristic 9.2.2. Let E1 × E2 be a product of elliptic curves to which we apply a 2-dimensional isogeny compu-
tations during an honest execution of SQIsign.KeyGen, SQIsign.Sign, and SQIsign.Verify. Then the trace of the
product coordinateX1 ·X2 under the gluing kernel, behaves like an independent random element of a F(p2) vector
space of dimension one.

Clearly the chance of encountering a zero trace is O(p−2), and the computation only involves O(1) two-
dimensional isogenies: thus, the total failure probability for the second type of failures is in O(p−2).

We note that this second failure may also happen (with negligible probability) during verification of an honest
signature, because the gluing is computed from the other side in the verification compared to the signature.

84
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9.3. Ideal-to-isogeny translation
The IdealToIsogeny algorithm is the main algorithmic building block behind SQIsign key generation and signature.
It can fail in three places:

(1) If the call to GeneralizedRepresentInteger fails in one of the two executions of FixedDegreeIsogeny,
(2) If the call to SuitableIdeals fails,
(3) If any of the calls to Isogeny22Chain fail.

The latter was already discussed in Section 9.2 as it is not unique to the IdealToIsogeny algorithm.
There are also possible failures during the calls to RandomEquivalentPrimeIdeal in the Key Generation and

commitment phases. As they are somewhat related to the possible failures of GeneralizedRepresentInteger, we
treat both cases at once in Section 9.3.1. The failures of SuitableIdeals are treated in 9.3.2. A common heuristic
used in all of them is the following:

Heuristic 9.3.1. Integers represented by a quadratic form behave like independent random integers of the same
size with respect to factorization, coprimality and quadratic residuosity.

This type of assumption is very common in number theory, and after accounting for obstructions that may arise
in specific cases (e.g., some congruence properties), tends to be satisfied in practice and can be easily confirmed
experimentally.

Some of these assumptions could be removed assuming variants of the Generalized Riemann Hypothesis
(GRH), following [Wes22], but the price to pay would be an increase of parameters and significant loss in effi-
ciency. We do not pursue this direction in SQIsign.

9.3.1. GeneralizedRepresentInteger and RandomEquivalentPrimeIdeal

GeneralizedRepresentInteger is called in two places in the whole algorithm:
• InFixedDegreeIsogenywith inputM ≈ p·2QUAT_repres_bound_input, any of the ordersOt, and isogenyCond

set;
• In RandomIdealGivenNorm with input M ≈ p3/2, order O0 and isogenyCond unset.

We analyze the former as it is the most constrained call; the same arguments apply to the latter.
GeneralizedRepresentInteger calls Cornacchia to solve an equation of the form x2 + qy2 = M ′ for M ′ =

4M − p(z2 + qw2), where z, w are random in some intervals. This call succeeds if and only if:
• −q is a square modulo M ′ and
• M ′ is a prime represented by x2 + qy2;

because isogenyCond is set, however, the solution may be discarded if it does not satisfy an additional constraint
modulo 4.

Let B = p · 2QUAT_repres_bound_input+2, assuming Heuristic 9.3.1 M ′ behaves like a random integer and thus
we expect that it will be prime with probability≈ 1/ ln(B) and that−q will be a square with probability 1/2. The
additional modular constraint is satisfied with probability 1/16.

Recalling the definition

QUAT_repres_bound_input =
⌈
log2(log1−1/(64 log2(p))

(2−64))
⌉
,

we see that B < p2, and thus we can lower-bound the probability of success of one iteration of the main loop by
1

64 ln(p)
>

1

64 log2(p)
.

Now observe that the loop repeats up to ⌈4M/(p
√
q)⌉ ≈ 2QUAT_repres_bound_input times, so the total failure

probability is less than (
1− 1

64 log2(p)

)2QUAT_repres_bound_input

< 2−64.

The analysis of RandomEquivalentPrimeIdeal is similar. There, we search for an equivalent ideal of prime
norm to the ideal I in input. In practice, this means finding β ∈ I such that nrd(β)/ nrd(I) is prime. Given a
basis α1, α2, α3, α4 this is equivalent to finding a prime number represented by the quadratic form

qI : (c1, c2, c3, c4) 7→
nrd(c1α1 + c2α2 + c3α3 + c4α4)

nrd(I)
.
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We sample c1, c2, c3, c4 in a box of size [−QUAT_equiv_bound_coeff, QUAT_equiv_bound_coeff]4 and so
there are (2QUAT_equiv_bound_coeff+ 1)4 different candidates.

Again, we use Heuristic 9.3.1 to argue that numbers represented by qI behave as random integers of the same
size. Since α1, α2, α3, α4 is L2-reduced we have

qI(c1, c2, c3, c4) ≈
8p

π2
· QUAT_equiv_bound_coeff2

by [DLRW24, Lemma 48], so we can bound the probability that it is prime by 1
2 log(p) . Then, proceeding like before

we estimate the total failure probability to(
1− 1

2 log(p)

)(2QUAT_equiv_bound_coeff+1)4

< 2−64.

9.3.2. SuitableIdeals

The last heuristic algorithm in the ideal-to-isogeny translation is SuitableIdeals, and it is also the most difficult to
analyze. We tackle it with a combination of heuristics, experimental data, and approximations. Its parameters are
a list of norders + 1 special extremal orders Oi (see Section 3.1.7) and an integer FINDUV_box_size defining the
search space. Their choice greatly affects the efficiency and the failure probability of the algorithm.

SuitableIdeals takes as input a left O0-ideal I0 and starts by constructing the ideals Ii = JiI0 where Ji is a
fixed ideal connecting Oi to O0. Clearly the ideals Ii are correlated, but we make a first simplifying assumption:

Heuristic 9.3.2. Let I be an ideal connecting O0 to O-ideal. Let (Oi) be a collection of special extremal orders
and let Ji be ideals connecting Oi to O0. Then the ideal classes of Ii = JiI behave like independent random left
ideal classes of Oi.

This assumption is clearly false. For example, because all Oi are special extremal, the classes cannot all have
representatives of too small norm (see [LB20]). However, in practice the behavior of the Ii’s is quite close to that
of random ideals, and, if anything, the correlation plays in favor of SuitableIdeals.

Then, SuitableIdeals defines quadratic forms qIi(α) = nrd(α)/ nrd(Ii) and enumerates elements from all
Ii’s until it finds a pair (βs, βt) such that:

(1) qIs(βs) and qIt(βt) are both odd and coprime;
(2) there exists a solution to the equation uqIs(βs) + vqIt(βt) = 2f with u and v positive.

Using Heuristic 9.3.1, we can treat qIs(βs) and qIt(βt) as random integers, then it is well known that the first
condition is satisfied with probability

1

3ζ(2)
=

2

π2
.

Granted the first condition, the second condition is much trickier: when (qIs(βs)− 1)(qIt(βt)− 1) < 2f +1 then
we know u and v always exist. However when the product gets larger we may be out of luck. Here we introduce
one more assumption:

Heuristic 9.3.3. Let c > 0 be fixed and let a, b be uniformly random positive coprime integers such that ab > c.
The probability that there exist u, v positive such that ua+ vb = c is approximately c/ab.

Assuming this and 9.3.1, the probability that one pair (βs, βt) satisfies the constraints is

2

π2

2f

qIs(βs)qIt(βt)
. (11)

We now analyze how large the denominator can be.
For each ideal Ii, SuitableIdeals first computes an L2-reduced basis (α1, α2, α3, α4), then enumerates βi =

c1α1+c2α2+c3α3+c4α4 in a parallelogram |cj | ≤ FINDUV_box_size. The size of βi will depend on the norms
of the αj , which in turn depend on the minima of the lattice Ii. We make a simplifying assumption:

Heuristic 9.3.4. Let (α1, α2, α3, α4) be an L2-reduced basis of a lattice of Bp,∞ with quadratic form q, ordered
by increasing norm. Then q(αj) is close to the j-th minimum of the lattice.

Our experiments show that this assumption is verified in practice, and in fact that in a large majority of cases
q(αj) is the j-th minimum.
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We need to understand the distribution of the minima. Let I be a leftO-ideal with Minkowski basis (α1, α2, α3, α4).
Write νi = q(αi). We have

p2

16
≤ ν1ν2ν3ν4 ≤

p2

4
,

where the lower bound is given by the volume of the lattice and the upper bound follows from [Cas78, Chapter 12].
As a consequence,

ν1 ≤
√
p/2 and ν4 ≥

√
p/2.

Because we only consider special extremal orders O containing an element of norm q, it is always the case that
ν2 ≤ ν1q. In fact, it is often the case that ν4 ≤ ν3q too. To simplify, we shall ignore q and use in our estimates

ν1 ≈ ν2 and ν3 ≈ ν4.

Then
p

4
⪅ ν1ν4 ⪅

p

2
.

Extensive experiments on O0-ideals show that ν1ν4 is closer to the lower bound with overwhelming probability,
and especially so when ν1 is far from

√
p/2, which is the case we are mostly interested in. Thus, we are going to

make the approximation
ν4 ≈

p

4ν1
. (12)

The distribution of ν1 is relatively easy to understand. Say I is a random left O-ideal, ν1 is the norm of the
smallest ideal equivalent to I . There are ψ(n) left O-ideals of norm n, where ψ is the Dedekind psi function

ψ(n) = n
∏
p|n

(1 + 1/p),

thus there are ∑
x≤n

ψ(x) ≈ ζ(2)

2ζ(4)
n2 =

15

2π2
n2 (13)

ideals of norm ≤ n (see [Apo76, Exercise 3.11]). The total number of ideal classes is ≈ p/12, so if all ideals of
norm ≤ n were in different classes we would expect

Pr{ν1 ≤ n} ≈
90

π2

(
n
√
p

)2

.

However, whenO is special extremal it contains elements of small normω, thus if I has small norm so does Iω,
which is in the same class. Nevertheless, O contains few elements of small norm, thus we still expect Pr{ν1 < n}
to grow with the square of n. Our experiments on O0 show an actual distribution of

Pr{ν1 < n} ≈ 6.45652

2

(
n
√
p

)2

, (14)

which is very accurate for n up to ≈ √p/2. Combining Eq. (14) with Eq. (12) gives

Pr{ν4 > n} ≈ 6.45652

32

(√
p

n

)2

, (15)

which, although less accurate, is still a pretty good approximation for the tail n ⪆
√
p.

Finally, we come to the estimation of the failure rate. SuitableIdeals enumerates elements βi ∈ Ii in a box of
sides |cj | ≤ FINDUV_box_size, thus

qIi(βi) ⪅ FINDUV_box_size2ν(i)4 .

Let us set a cutoff parameter C > 0 and overestimate the failure probability by analyzing a modified version of
SuitableIdealswhich discards any ideal Ii with ν4 > C

√
p and ignores its βi. This variant keeps 0 ≤ s ≤ 1+norders

ideals with probability

F1(C, s) =

(
1 + norders

s

)(
1− Pr{ν4 > C

√
p}
)s(

Pr{ν4 > C
√
p}
)1+norders−s

. (16)

Each of the kept ideals contributes

B = (2 FINDUV_box_size+ 1)4 − 1 (17)
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Table 8. Estimated failure probabilities of SuitableIdeals for all security levels.

FINDUV_box_size 1 + norders (p+ 1)/2f argminF (C) minF (C)

NIST level I 2 7 5 18 2−65

NIST level III 3 8 65 10 2−61

NIST level V 3 7 27 13 2−60

elements βi to the search, for a total of sB(sB − 1) pairs to test. The probability that one of these pairs passes the
test is given in Eq. (11), substituting FINDUV_box_size2C√p for the norms we get a lower bound of

2 · 2f

FINDUV_box_size4π2C2p
. (18)

Putting everything together we obtain an estimate for the failure probability of

F (C) =

1+norders∑
s=0

F1(C, s)

(
2 · 2f

FINDUV_box_size4π2C2p

)sB(sB−1)

. (19)

Finally, we look for the C ∈ [1/2,
√
p] that minimizes F (C). Substituting the constant defined in this doc-

ument, we find values for FINDUV_box_size, norders, and C that achieve failure probability 2−60 or lower at all
security levels, as reported in Table 8.

To gain more confidence in these estimates, we ran SuitableIdeals for values of norders = 0, 1, and we compared
their failure rates with the predicted results. For level I parameters:

• Fornorders = 0we observed 11 029 failures over 3 269 000 runs, i.e., a failure rate 2−8.2 against a predicted
probability of 2−9;

• For norders = 1 we observed 6 failures over 20 553 000 runs, i.e., a failure rate 2−21.7 against a predicted
probability of 2−18.

For level III parameters:
• Fornorders = 0we observed 15 022 failures over 1 162 000 runs, i.e., a failure rate 2−6.3 against a predicted

probability of 2−7;
• For norders = 1 we observed 26 failures over 7 967 000 runs, i.e., a failure rate 2−18.2 against a predicted

probability of 2−14.
For level V parameters:

• Fornorders = 0we observed 10 096 failures over 3 468 000 runs, i.e., a failure rate 2−8.4 against a predicted
probability of 2−8;

• For norders = 1 we observed 4 failures over 4 429 000 runs, i.e., a failure rate 2−20 against a predicted
probability of 2−16.

These experiments give support the quality of our heuristic approximation and give us confidence in having
reached the desired failure probability.



CHAPTER 10

Security analysis

This chapter discusses the security of SQIsign. In Section 10.1, we prove that SQIsign is existentially un-
forgeable against chosen message attacks (EUF-CMA) under two isogeny-based hardness assumptions. Then, in
Section 10.2, we analyze the resistance of SQIsign to known attacks, which helps determine concrete parameters.
Finally, in Section 10.3, we conclude with a discussion on various choices made for the parameters and how these
choices have no known impact on security.

10.1. Security reductions

We analyze the security of SQIsign by relying on the Fiat-Shamir with hints1 framework [ABDF+25]: we follow
the usual Fiat-Shamir approach, where the soundness and zero-knowledge properties are proved separately. In this
framework, however, the zero-knowledge simulator is given access to additional information, which we refer to as
hints. The analysis in [ABDF+25] shows that such hint-assisted zero-knowledge property is sufficient to obtain
EUF-CMA security for the resulting signature scheme, under a variant of the soundness assumption where the
attacker has access to the hints. While in this section we give a high-level overview of the security proofs and its
main results, we refer the reader to [ABDF+25] for a more thorough treatment. Note that we analyze a version
of SQIsign where its subroutines do not fail: we address the impact of algorithm failures on the security of the
protocol in Section 10.2.8.

Definition of EUF-CMA security. The EUF-CMA security of a signature scheme S is formulated as a game
between an adversary A and a challenger.

Definition 10.1.1 (EUF-CMA game). The challenger generates a key pair (pk, sk) ← KeyGen(1λ) and gives the
public key pk toA. The adversaryA gets black-box query-access to a signing oracleOSign, which when queried on
a message msg outputs a signature σ ← Sign(sk,msg). The adversary A wins the game if it can output a message
msg∗ and a signature σ∗ such that Verify(pk,msg∗, σ∗) = 1 and msg∗ has not been queried to OSign.

We define the advantageAdvEUF-CMA
S (A) ofA as the probability that it wins the game. We say that the signature

scheme S is EUF-CMA secure if every PPT adversary has negligible advantage in the security parameter λ.

Soundness. SQIsign defines a Σ protocol for the EndRing relation. It is 2-special sound, but only with respect to
the OneEnd problem: given two accepting transcripts for the same commitment, it is possible to extract a non-scalar
endomorphism.

Lemma 10.1.2. If echl + ersp ≤ e, then the SQIsign Σ protocol is special-sound for the relation

ROneEnd =
{
(Epk, α)

∣∣ α ∈ End(Epk) \ Z in efficient representation with deg(α) ≤ p4
}
.

Zero-knowledge. We now analyze the zero-knowledge property of the SQIsign Σ protocol in the Fiat-Shamir
with hints framework. First, we formalize the concept of hints and of a hard relation with hints.

Definition 10.1.3 (Hint distribution). Let R ⊂ X ×W be a relation. A hint distribution H for R is a collection
of distributions H = {Hx}x∈X , where Hx : HintSetx → [0, 1] and the elements (i.e., the hints) of HintSetx are
efficiently representable in |x|. The distributionHx needs not be efficiently sampleable.

1The hints in this framework are additional data that the simulator has access to; they are unrelated to the basis hints that are used in
SQIsign to speed up the torsion basis generation, as discussed in Section 2.2.3.

89
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Definition 10.1.4 (Hard relation with hints). Let R be a hard relation and let H be a hint distribution for R. We
call the pair (R,H) a relation with hints. We say that it is a hard relation with hints if, in the following game, it
holds for all PPT algorithms A and all q = poly(λ) that

Advhint-rel(R,H)(A, q) := Pr

(x,w∗) ∈ R

∣∣∣∣∣∣∣
(x,w)← GenR(1

λ),

h1, . . . , hq ← Hx,
w∗ ← A(x, h1, . . . , hq)

 = negl(λ),

whereGenR(1λ) is a polynomial-time algorithm that samples instances (x,w) from the distributionRwith security
parameter 1λ.

We define a variant of weak honest-verifier zero knowledge (wHVZK) property with hints as follows.

Definition 10.1.5 (Hint-assisted wHVZK). Let Σ be a Σ-protocol for a relation R and letH be a hint distribution
for R. We say that Σ is H-hint-assisted wHVZK if there exists a PPT algorithm, called the simulator S, such that
for all q = poly(λ) and all PPT algorithms A

Advhint-wHVZKΣ,H,S (A, q) := Advdist
[
RealΣ(1

λ, q),HintSimΣ(1
λ, q,S)

]
(A) = negl(λ),

where Advdist [·, ·] (A) is the advantage of the adversary A in distinguishing the two distributions: RealΣ(1
λ, q),

which produces q real transcripts of Σ, and HintSimΣ(1
λ, q,S) which outputs q transcripts, simulated by a simu-

lator S with access to q hints.

In this security proof, we consider two hint distributions, described in Fig. 5. Both distributions sample three
isogenies that are used by the simulator to generate a transcript. The first distribution, Hsim

E , samples a challenge,
a random commitment curve, and then a connecting isogeny between the challenge curve and the commitment
curve. The second distribution,Hunif

E , instead samples a challenge and then an isogeny from the challenge curve to
a random curve. This second distribution has the advantage of being “pushable”, i.e., given an isogeny from E to
E1 and access to the distributionHunif

E , it is possible to construct the distributionHunif
E1

. Thus, the simulator would
not need Hunif

E to sample a challenge isogeny, the formulation in Fig. 5 includes it to show the similarity with the
Hsim
E distribution.

DChall(E):

1: s
$← {0, . . . , 2echl − 1}.

2: (P,Q), _← TorsionBasisToHint(E)
3: E′, _← TwoIsogenyChain(P + [s]Q, f, _) // The 2f -isogeny with kernel ⟨P + [s]Q⟩ has codomain E′

4: return s, E′.

Hsim
E :

1: s, E1 ← DChall(E).
2: Sample an isogeny φ′

2 : E1 → E2 such that
i E2 is uniformly distributed.
ii The conditional distribution of φ′

2 given E2 is uniform among isogenies E1 → E2 of degree < 2ersp .
3: Write φ2 : E1 → E2 for the cyclic component of φ′

2.
4: Write deg(φ2) = 2nd′ with d′ odd.
5: Sample an isogeny φ3 : E2 → E3 uniformly among the cyclic isogenies from E of degree 2ersp−n − d′.
6: return h = (s, φ2, φ3).

Hunif
E :

1: s, E1 ← DChall(E).
2: Sample an integer d from a weighted distribution on the interval [1, 2ersp ] where each integer n, with prime

factorization n =
∏t

i=1 p
ei
i , has weight

∏t
i=1(pi + 1)pei−1

i .
3: Sample an isogeny φ′

2 : E1 → E2 uniformly among the (possibly non-cyclic) isogenies from E1 of degree d.
4: Write φ2 : E1 → E2 for the cyclic component of φ′

2.
5: Write degφ2 = 2nd′ with d′ odd.
6: Sample an isogeny φ3 : E2 → E3 uniformly among the cyclic isogenies from E2 of degree 2ersp−n − d′.
7: return h = (s, φ2, φ3).

Figure 5. Hint distributions for SQIsign.
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By relying on the first hint distribution Hsim
E , we can obtain the computational weak honest-verifier zero-

knowledge (wHVZK) property of the SQIsign Σ protocol.

Lemma 10.1.6 (Computational hint-assisted wHVZK). For any q = poly(λ) and any PPT adversary A against
the hint-assisted wHVZK of the SQIsign Σ protocol with q hints, there exists a Hsim-hint-assisted simulator and a
PPT algorithm B such that

Advhint-wHVZKΣSQI,Hsim, (A, q) ≤ AdvEndRingp(B) + 3(q + 1)

2
√
p

,

where AdvEndRingp(B) is the probability that B solves the EndRing problem for the prime p and a supersingular
curve sampled uniformly at random.

In the previous lemma, the advantage of A is bounded by two terms: the first term is the success probability
of an EndRingp algorithm B (this is due to the reduction handling cases where any of the curves in the transcript
has known endomorphism ring), while the second term is a term that accounts for the statistical distance between
the real and simulated transcript distributions.

EUF-CMA security of SQIsign. Finally, we combine the relation ROneEnd with the hint distributions Hsim to
obtain that ROneEnd is a hard relation withHsim hints, assuming the hardness of the following problem.

Problem 10.1.7 (q-sim-hint-OneEndp). Given a supersingular curve E sampled uniformly at random and q hints
h1, . . . , hq ← Hsim

E , find one non-scalar endomorphism of E in efficient representation.

We can now apply the Fiat-Shamir with hints framework, and we obtain that SQIsign is Existential Unforge-
ability under Chosen Message Attack (EUF-CMA) secure in the Random Oracle Model (ROM) under the assump-
tion that the above problem is hard.

Theorem 10.1.8 ([ABDF+25, Theorem 2]). Assume that p ≥ 3146. Then for any PPT algorithm A against the
EUF-CMA of SQIsign, there exists an expected polynomial time algorithm B such that

AdvEUF-CMA
SQIsign (A) ≤ (q + 1) ·

(
2 · Advhint-rel(ROneEnd,Hsim)(B, s) + 2−echl

)
+ (3q + s+ 3)s · 5

4
√
p
,

where q and s are upper bounds on the number of queries that A makes to the random oracle and OSign, respec-
tively.

Next, we consider using the second hint distribution Hunif . This has several benefits, as we will see. But, it
requires us to introduce an additional problem that asks to distinguish between the two distributions.

Problem 10.1.9. Let E be a supersingular curve sampled uniformly at random. Distinguish between the distribu-
tions (E,Hsim

E ) and (E,Hunif
E ).

Then, we consider the relation with hints (ROneEnd,Hunif
E ), whose hardness depends on the following problem.

Problem 10.1.10 (q-unif-hint-OneEndp). Given a supersingular curveE sampled uniformly at random and q hints
h1, . . . , hq ← Hunif

E , find one non-scalar endomorphism of E in efficient representation.

Theorem 10.1.11 ([ABDF+25, Theorem 3]). Assume that p ≥ 3146. Then for any PPT algorithm A against the
EUF-CMA of SQIsign, there exists expected polynomial time algorithms B and D such that

AdvEUF-CMA
SQIsign (A) ≤ (q + 1) ·

(
2 · Advhint-rel(ROneEnd,Hunif)(B, s) + 2 · Advhint-dist(D, s) + 2−echl

)
+ (3qs+ s2 + 3s+ 2q + 2) · 5

4
√
p
,

where q and s are upper bounds on the number of queries that A makes to the random oracle and OSign, respec-
tively; the advantages of B andD are essentially their success probability for respectively the s-unif-hint-OneEndp
problem and Problem 10.1.9.

The advantages of reducing the EUF-CMA security of SQIsign to the q-unif-hint-OneEndp problem are
twofold. On one hand, the q-unif-hint-OneEndp benefits from a worst-case to average-case reduction: this means
that as long as there exists a single hard instance of the problem, any average instance of it is similarly hard.
Such a reduction is made possible by the fact that the Hunif hint distribution is pushable, and thus the problem
is random self-reducible. On the other hand, the pushability of the Hunif hint distribution makes it possible to
adapt the reduction between the Endomorphism Ring problem and the One Endomorphism problem by Page and
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Wesolowski [PW24]. Such an adaption shows that the q-unif-hint-OneEndp problem is equivalent, under a tight
quantum reduction or a looser classical reduction, to the following generalization of the Endomorphism Ring prob-
lem to the hint setting.

Problem 10.1.12 (q-unif-hint-EndRingp). Given a supersingular curveE sampled uniformly at random and q hints
h1, . . . , hq ← Hunif

E , find four endomorphisms in efficient representation that form a basis of End(E).

The q-unif-hint-EndRingp is a much more natural problem, and its variant without hints has been extensively
studied in the literature. In the following section, we argue why the hints are unlikely to make the problem easier
(Section 10.2.3).

10.2. Resistance to known attacks
SQIsign parameters are selected to satisfy the following requirements (among others, see Section 4.2.1):

• The prime p = c · 2f − 1, where c is a small positive integer and f ≈ 2λ.
• The secret and the commitment isogeny are of degree Dmix, the smallest prime larger than 24λ.
• The challenge isogeny degree is Dchl = 2f with f as above.
• The challenge space has size 2echl with echl ≈ λ.
• The response isogeny degree drsp is not fixed beforehand, but always satisfies drsp < Drsp = 2ersp with
ersp =

⌈
log2

(√
p
)⌉
≈ λ.

Below, we discuss known attacks on SQIsign and show that these parameter choices offer at least λ bits of security
against all classical attacks and λ/2 bits of security against all quantum attacks. Throughout, for any function g,
we will write Õ(g) to meanO(gℓ(g)), where ℓ is any polylogarithmic function. Note that for several attacks below,
these logarithmic factors will contribute to more than a few bits of additional security.

10.2.1. The pure endomorphism ring problem and general isogeny finding

An algorithm to compute the endomorphism ring of a supersingular elliptic curve would break essentially all
isogeny-based cryptography schemes, including SQIsign [EHL+18]. Indeed, from the endomorphism ring one can
compute a corresponding maximal order in the quaternion algebra, and from there compute an isogeny between
E0 and Epk, which can then act as an equivalent secret key.

The best algorithm for finding one non-scalar endomorphism of a random supersingular curve is the algorithm
from [EHL+20] with timeO

(
(log p)2p1/2

)
⊆ Õ(p1/2) and low memory requirements. Using a quantum computer

and Grover search, the time becomes Õ(p1/4), still with low memory requirements. The whole endomorphism ring
of a supersingular curve can typically be obtained by running the above algorithm O(1) times.

For supersingular curves, the general isogeny problem (i.e., given two curves, finding an isogeny of arbitrary
degree between them) is equivalent to the endomorphism computation problem [EHL+18; Wes22], hence it has
Õ(p1/2) classical complexity and Õ(p1/4) quantum complexity. In SQIsign, the prime p is chosen so that p ≈ 22λ,
so the complexity of the best known attack against the endomorphism ring problem, or equivalently the general
isogeny problem, is thus Õ(2λ) classically and Õ(2λ/2) quantumly.

10.2.2. Key recovery

In SQIsign, the secret isogeny φsk : E0 → Epk is close to a uniformly random isogeny with degreeDmix. Alterna-
tively, any (representation of an) isogeny between these two curves could act as an equivalent key, i.e., it is sufficient
to sign. The condition Dmix > 24λ guarantees that the distribution of Epk is close to the uniform distribution. By
the above equivalence result, computing an isogeny between E0 and Epk (with a fixed known-endomorphism E0)
is equivalent to the endomorphism ring computation problem, with complexity as stated above.

Given a valid signature, one can also attempt to recover an equivalent secret key in SQIsign by first computing
the commitment isogeny betweenE0 andEcom, or in fact any isogeny between these two curves: given any isogeny
between E0 and the commitment curve, the challenge isogeny, and the signature isogeny, one directly deduces an
isogeny from E0 to Epk. However, the commitment isogeny has the same degree Dmix as the secret isogeny: since
Dmix > 24λ, the distribution ofEcom is also close to the uniform distribution. Thus, computing an isogeny between
E0 and Ecom is again equivalent to the endomorphism ring computation problem.
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10.2.3. Signature forgery

Forging a signature requires breaking a version of the endomorphism ring problem with hints, which a priori could
be easier than the generic endomorphism ring problem. In this variant, the adversary is provided with a target
curve E and a list of isogenies from E of varying degrees. If the degrees were all smooth, these hints would
provide no additional information: anyone can sample random smooth-degree isogenies from any curve, and the
two problems would thus be equivalent. In SQIsign, however, the hints contain also isogenies of non-smooth
degree, which prevents a reduction between the two problems: this is due to the fact that sampling non-smooth
degree isogenies, without additional information on the endomorpshim ring of the starting curve, is generally
believed to be hard: a recent isogeny-based proposal [BBC+25] bases its security on such a hardness assumption.
Nonetheless, it is unlikely that non-smooth degree isogenies contribute to making the endomorphism ring problem
easier: conceptually, non-smooth degree isogenies do not provide any additional information that cannot be already
obtained by smooth-degree isogenies. If anything, existing algorithms to compute endomorphisms of a given curve
typically use smooth-degree isogenies. Indeed, the best known attack against the endomorphism ring problem with
hints disregards the additional information and attempts to compute the endomorphism ring of E directly: thus,
the complexity of the best known attack is exactly the same as that for the generic endomorphism problem.

10.2.4. Zero-knowledge

The security of SQIsign relies on a second assumption, the hardness of Problem 10.1.9, which is necessary to
guarantee the zero-knowledge property of the underlying sigma protocol. This assumption is a formalization of the
heuristic introduced in [BDD+24] to argue the equivalence of the UTO and FIDIO oracles. Our argument for the
hardness of Problem 10.1.9 follows a similar approach as [BDD+24].

First, the two distributions in Problem 10.1.9, the Hsim and the Hunif distributions, are perfectly the same if
conditioned on the codomain curve being the same. If the codomain of φ3 is fixed, then the two distributions both
sample uniformly random connecting isogenies of bounded degree. Thus, any attack against Problem 10.1.9 would
need to distinguish between the distributions of the codomain curves: Hsim samples them uniformly at random,
whileHunif samples them as the codomain of a random isogeny of bounded degree. If this degree were to be suffi-
ciently large (i.e., larger than p2), the distributions on the codomain curves would be statistically close [DLRW24,
Theorem 42], which makesHsim andHunif statistically indistinguishable. In SQIsign, the degree bound isO(

√
p):

thus, we do not achieve statistical indistinguishability, but we expect the two distributions to be computationally
indistinguishable.

10.2.5. Attacking the Fiat-Shamir transform

Like any Fiat-Shamir signature, one can also attempt to forge signatures by breaking security properties of the hash
function used in the Fiat-Shamir transform (SHAKE). In SQIsign, we use a hash function HASH, with inputs of
the form pk || j(Ecom) || msg, truncated to echl bits of output. This provides at least echl bits of classical security
against both preimage and second preimage attacks, and echl/2 bits of resistance against classical collision attacks.

Given a valid signature σ for a message msg, one can use a second preimage attack on the hash function to
obtain a second message msg′: this leads to the exact same challenge in the SQIsign identification protocol, so that
σ is also a valid signature for msg′. This would yield a forgery attack with complexity O(2echl), which is slightly
below theO(2λ) target. To make up for the security gap, we use a hash function that consists of 2λ−echl iterations of
a standard hash function, which in our case is SHAKE256. This technique, commonly referred to in the literature
as ‘grinding’, brings the attack cost to the desired O(2λ): finding a collision in HASH requires O(2echl) attempts,
each of which consists of evaluation HASH, which has a cost of at least 2λ−echl . Thus, the total attack cost isO(2λ).

It is also possible to consider attacks on the Fiat-Shamir transform. While producing a pair of collisions only
costs 2echl/2 bits, this does not seem to lead to more efficient unforgeability attacks on SQIsign. Indeed, the curve
Ecom would a priori need to be fixed before starting the collision search, and the second preimage attack above gives
no control on the curve Ecom to the adversary. A legitimate signer could also attempt to produce two messages
such that HASH(pk || j(Ecom) || msg) = HASH(pk || j(Ecom) || msg′), pretend to sign m, and later deny this by
claiming to have signed m′. This attack only requires (fixed prefix) collisions, and hence it can be carried out in
timeO(2echl/2). Note that this “deniability attack” goes beyond the basic unforgeability requirement for signatures,
and that it also applies to any Fiat-Shamir signature with the same challenge space size.
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10.2.6. BUFF security

The Beyond Unforgeability Features (BUFF) [CDF+21] include the security notions of exclusive ownership (EO),
message-bound signatures (MBS) and non-resignability (NR). Due to the differences between the round-one SQIsign
submission and the present round-two SQIsign submission, the BUFF security analysis for SQIsign from [ADM+24]
does not apply.

The BUFF transform [CDF+21] reduces the security of a signature scheme with regard to all BUFF notions
to the collision resistance of the underlying hash function by signing a hash of the message and public key. Since
in SQIsign the challenge chl = HASH(pk || j(Ecom) || msg) of length ≈ λ is part of the signature, and takes the
public key as an input, we use an implicit form of the BUFF transform by design. Hence, SQIsign achieves at least
≈ λ/2 bits of security for all BUFF notions, while this bound is only tight for MBS.

SQIsign can easily be adapted to achieve λ bits of BUFF security at the cost of a minor increase in signature
size: increasing the hash output length to get chl2λ = HASH(pk || j(Ecom) || msg) of bit length 2λ as part of the
signature ensures sufficient collision resistance. During signing and verifying, only the first ≈ λ bits of chl2λ are
used as chl, and we follow the exact same signing and verifying procedure, featuring a challenge space of ≈ λ bit,
as above. This modification is similar to the way ML-DSA achieves BUFF security, and increases the signature
sizes in SQIsign by λ/8 bytes due to the larger size of chl2λ.

10.2.7. Strong unforgeability

Note that SQIsign does not target strong unforgeability security, and indeed given a valid signature on a message,
one can efficiently produce a second distinct valid signature on the same message by manipulating the auxiliary
isogeny. Replacing the auxiliary isogeny with any other isogeny of the same degree yields a valid signature.

The role of the auxiliary isogeny in the signature is only to enable a two-dimensional representation of the
response, but it does not contribute to the security of the protocol. In other words, two-dimensional representations
are inherently not unique: given such a representation, in most instances it is easy to find a different representation
of the same isogeny. For this reason, SQIsign cannot achieve strong unforgeability.

10.2.8. Algorithm failures and their impact on security

The implementation of SQIsign relies on some algorithms that can possibly fail rather than producing the desired
output, as discussed in Chapter 9. We identify three such high-level algorithms: the computation of (2n, 2n)-
isogenies, the translation of ideals to their corresponding isogeny, and the sampling of the auxiliary isogeny. The
protocol handles these cases differently depending on where the failure occurs: if any subroutine fails during key
generation or signing, the protocol restarts the entire operation with different randomness; during verification, an
algorithmic failure leads to a signature rejection.

These failure cases always occur with small or negligible probability, so they have a limited impact on the
security of SQIsign. We now analyze the three algorithms separately, discussing their precise impact on the pro-
tocol.

(2n, 2n)-isogeny computation. The computation of (2n, 2n)-isogenies occurs in multiple places in SQIsign:
within the translation of ideals to isogenies (during signing) and in the computation of the isogeny Φ (during
signing and verification). However, in specific circumstances, the algorithm described in Section 2.4.1 may fail.
When a failure occurs during signing, the signer restarts the procedure; when the failure occurs during verification,
the verifier outputs false since a failure indicates with overwhelming probability (roughly, 1− 2−4λ) a malicious
signature.

The computation of (2n, 2n)-isogenies may fail for multiple reasons, including the presence of products of
elliptic curves in the middle of the chain. However, as argued in Chapter 9, these failures occur with negligible
probability O(2−2λ). As such, they do not impact the security of SQIsign.

Ideal to isogeny translation. The algorithm to translate ideals into isogenies relies on several algorithms that may
fail: these include the computation of (2n, 2n)-isogenies (discussed above), sampling endomorphisms of a given
degree, and finding equivalent ideals to the input ideal that satisfy certain conditions (which is necessary to translate
the ideal using only isogenies in dimension two). While the failure probability of each of these subroutines varies
considerably, the protocol parameters are chosen to guarantee that the ideal to isogeny translation only fails with a
probability lower than 2−64, for all three security levels.
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Let us consider the impact of such failure cases on security separately, depending on when they occur:
• Key Generation: the secret ideal is translated into its corresponding isogeny to obtain the public key

curve Epk. If a failure occurs, the key generation restarts with different randomness. The majority of
failure cases depend on the equivalence class of the input ideal: this means that whether the algorithm
fails will depend, with good probability, on the public-key curve Epk. Hence, some curves may never
be generated by the key generation procedure, which shows that the failure cases bias the distribution
of public keys. However, this does not affect security since the biased distribution is very close to the
uniform distribution (the statistical distance between the two is less than 2−64). This means that any
adversary against the biased distribution can be turned into an adversary against the uniform distribution
(see [ABDF+25] for a formal proof).

• Commitment generation: similarly to the case of key generation, SQIsign generates a random ideal and
translates into its corresponding isogeny to sample a commitment curve. If a failure occurs, the signing
procedure samples a different commitment ideal: thus, the failure cases in the ideal-to-isogeny translation
algorithm bias the distribution of the commitment curve. While this does not affect the hardness of the
endomorphism problem or the soundness of the protocol, it may have an impact on the zero-knowledge
property. However, we do not expect it to be the case because any realistic attack scenario would limit
the number of signatures accessible to the adversary to, at most, 264 signatures per public key.2 Thus,
the failure probability is exactly the inverse of the maximum number of signatures: even an attacker with
access to such a large number of signatures is expected to see only one curve that is the result of a failure
in the ideal-to-isogeny algorithm. This curve is sampled from an exponentially large subset of all possible
curves; it is thus unlikely that seeing such a curve helps the attacker to distinguish the two distributions.
Moreover, the failure probability depends on the ideal class connecting E0 to the commitment curve: we
thus expect that to even detect a bias, the adversary would need non-trivial knowledge on the connecting
ideal, and therefore non-trivial knowledge on the endomorphism ring of the commitment curve.

• Auxiliary isogeny translation: the ideal-to-isogeny translation algorithm is also a subroutine in the
sampling of the auxiliary isogeny, which is part of the response generation. We treat this separately since
the sampling of the auxiliary isogeny may fail also for other reasons.

Auxiliary isogeny sampling. The last routine that may fail is the sampling of the auxiliary isogeny. This may
happen for two reasons: the algorithm that generates a random ideal of composite norm may fail, or the ideal-to-
isogeny translation may fail. If a failure occurs, the entire signing procedure restarts. The analysis of this case is
similar to that of commitment generations: the low failure rate and the limited number of signatures available to
an adversary makes it unlikely for an attacker to distinguish a real transcript from a simulated one.

10.3. Nothing up my sleeve
Here we provide some additional comments on our parameter choices, arguing that these have no known impact
on security.

• We restrict our parameters to primes p congruent to 3 modulo 4. One could define SQIsign without that
restriction but, as argued in Chapter 5, this choice significantly simplifies certain computations. Note
that it is a standard choice in the literature to ensure that 1728 is the j-invariant of a supersingular elliptic
curve. This choice reduces the set of potential parameters by only half, and we are not aware of any
impact on the computational assumptions underlying SQIsign.

• More specifically, the primes we use are of a very specific shape, namely p = c · 2f − 1, where c is a
small positive integer. The special shape is motivated by efficiency considerations: it enables the efficient
use of (2, 2)-isogenies instead of the (d, d)-isogenies, for various small d, that would be required a priori
by generic primes. In addition, the special prime shape supports very efficient arithmetic over Fp and
Fp2 . Overall, these factors have a large performance impact. On the other hand, there is no evidence
that this prime selection affects the hardness of the endomorphism ring computation problem beyond the
polynomial speedups gained from faster arithmetic over Fp2 . We also note that, similarly, SIKE employed
special primes (of the form p = c · 2f3e − 1) with no known impact on security (the SIKE attacks work
independently of the shape of p).

2The NIST call for additional digital signature schemes explicitly mentions that [f]or the purpose of estimating security strengths, it may
be assumed that the attacker has access to signatures for no more than 264 chosen messages. Accessed at https://csrc.nist.gov/csrc/
media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf on February 2nd, 2025.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
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• As is typically the case in isogeny-based cryptography, the curve E0 with j-invariant j = 1728 plays a
special role in the algorithms. However, in contrast to other schemes (including the Round 1 version of
SQIsign), this choice is provably independent of security. The critical elliptic curves Epk and Ecom are
uniformly distributed, with no correlation with E0. This uniform distribution leverages the worst-case to
average-case reduction of the endomorphism ring problem, making the scheme’s security dependent on
the problem’s worst-case hardness.
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APPENDIX A

Lemmas on lattice sampling

We prove here that Algorithm LatticeSampling on page 26 is correct and we give a heuristic estimate for its
running time. In what follows ⟨x,x⟩ denotes a positive definite symmetric bilinear form and Q(x) = ⟨x,x⟩ its
associated quadratic form.

Lemma A.1. Let Q(x) be a positive definite quadratic form on Rd represented by a Gram matrix G. Let G−1 =
(g′i,j) and x = (xi)

t, then
x2i ≤ g′i,iQ(x) = g′i,ix

tGx.

Proof. Write (ei) for the canonical basis of Rd, so that ⟨ei, ej⟩ = etiGej = gi,j . Let (e⋆i ) be the basis of
the dual lattice to (ei) such that e⋆i (ej) = δi,j , it has an associated quadratic form Q(x⋆)

⋆
= x⋆G−1(x⋆)t. To

conclude observe that
x2i = e⋆i (x)

2 ≤ Q(ei)
⋆
Q(x) = g′i,ix

tGx,

where the inequality follows from the Cauchy–Schwarz inequality. □

Corollary A.2. Algorithm LatticeSampling on page 26 is correct: the vector it outputs is distributed uniformly
among those of norm ≤ B.

Proof. Let Λ be the lattice generated by (b0, . . . ,bd−1) and let (b⋆0, . . . ,b⋆d−1) be the basis of the dual
latticeΛ⋆. After the call to L2 the bases (b⋆0 · · ·b⋆d−1)U andU−1(b0 · · ·bd−1)

t, generatingΛ⋆ andΛ respectively,
are dual to one another; H is the Gram matrix of the former, and G′ = U−1G(U−1)t of the latter.

Write x = (x0 · · ·xd−1) and y = (y0 · · · yd−1), assume that

yGyt = xG′xt ≤ B,

then by Lemma A.1
x2i ≤ Hi,ixG

′xt ≤ Hi,iB.

Thus, rejection sampling from the parallelogram with bounds |xi| ≤ ⌊
√
Hi,iB⌋ ensures that every lattice vector

of length ≤ B is selected with the same probability. □

Getting a precise bound for the rejection probability of the algorithm seems difficult, however we can heuris-
tically approximate it by bounding the ratio between the volume of the parallelogram where the algorithm samples
and the volume of the ellipsoid that contains all (non-lattice) vectors of length ≤ B.

Lemma A.3. Let G be an (η, δ)-reduced positive definite Gram matrix. Define θ = (δ − η2)−1 then

(θ − 1)d

θd(d−1)/2

∏
Gi,i ≤ det(G) ≤

∏
Gi,i.

Proof. Let (b0, . . . ,b1) be an (η, δ)-reduced basis of a quadratic space such that ⟨bi,bj⟩ = Gi,j . Recall
from Definition 3.1.1 the definition of the Gram-Schmidt vectors:

bi = bi −
i−1∑
j=0

µi,jbj where
〈
bi,bj

〉
= µi,j

〈
bj ,bj

〉
.

The bi are orthogonal and related to the bi by a transformation of determinant 1, thus det(G) =
∏
Q(bi).

We have
〈
bi,bi

〉
=
〈
bi,bi

〉
because the Gram-Schmidt vectors are orthogonal, and

Q(bi) =
〈
bi,bi

〉
+

i−1∑
j=0

µi,j
〈
bi,bj

〉
= Q

(
bi
)
+

i−1∑
j=0

µ2
i,jQ

(
bj
)
.

ClearlyQ(bi) ≥ Q
(
bi
)

because the quadratic form is positive definite, proving the second inequality of the claim.
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Now, because the basis is (η, δ)-reduced

Q
(
bi
)
≥ (δ − η2)Q

(
bi−1

)
≥ (δ − η2)i−jQ

(
bj
)
,

thus, setting θ = (δ − η2)−1,

Q(bi) ≤ Q
(
bi
)
+ η2

i−1∑
j=0

1

(δ − η2)i−j
Q
(
bi
)
≤ θi+1 − 1

θ − 1
Q
(
bi
)
≤ θi+1

θ − 1
Q
(
bi
)
.

Finally
d−1∏
i=0

Q(b)i ≤
θd(d−1)/2

(θ − 1)d
det(G).

□

Lemma A.4. LetR ⊂ Rd be the parallelogram containing all vectors (x0, . . . , xd−1)which Algorithm LatticeSampling

on page 26 may sample before rejection. Let S ⊂ Rd be the ellipsoid defined by xGxt ≤ B. Let (η, δ) be the
parameters used for lattice reduction and set θ = (δ − η2)−1, then

vol(S)

vol(R)
≥
(π
4

)d/2 (θ − 1)d/2

θd(d−1)/4

1

Γ(d/2 + 1)
.

Proof. By definition

vol(R) ≤ 2dBd/2
d−1∏
i=0

√
Hi,i.

The volume of the unit ellipsoid xGxt ≤ 1 is

πd/2

Γ(d/2 + 1)

1√
det(G)

=
πd/2

√
det(H)

Γ(d/2 + 1)
,

thus

vol(S) =
πd/2Bd/2

√
det(H)

Γ(d/2 + 1)
.

But the Gram matrix H is (η, δ)-reduced, thus by Lemma A.3

vol(S)

vol(R)
≥
(π
4

)d/2 (θ − 1)d/2

θd(d−1)/4

1

Γ(d/2 + 1)
.

□

In particular, for d = 4, η = 0.51 and δ = 0.75 we obtain an estimate for the accepting probability of≈ 0.039.
Counter-intuitively, a larger value of δ leads to a worse bound, but this is due to the simplifications in the minoration:
a tighter version of Lemma A.3 shows the probability is indeed increasing with δ. Our experiments show the actual
probability is even better on average: close to 1/3.



APPENDIX B

Tables of constants

General Scheme Parameters. The following table gives the constants used as general scheme parameters.

Constant NIST Level Formula
I III V

λ 128 192 256
p See Chapter 5
f 248 376 500 DyadicValuation(p+ 1)

Dmix See formula next_prime(2⌈log2(4λ)⌉)

ersp 126 192 253
⌈
log2

(√
p
)⌉

Drsp 2126 2192 2253 2ersp

Dchl 2248 2376 2500 2f

echl 122 184 247 f − ersp

Lattice reduction. The following table gives the constants used in lattice reduction.

Constant NIST Level Formula
I III V

δ 0.99
η 0.51
Floating-point min. precision 24 bits
Floating-point min. exponent 20 bits

Quaternion Computations and Ideal-to-Isogeny Translation. The following table gives the constants used in
quaternion computations and IdealToIsogeny.

Constant NIST Level Formula
I III V

QUAT_primality_num_iter 32 32 32
⌈
− log4(2

−64)
⌉

QUAT_equiv_bound_coeff 64 64 64 21+QUAT_repres_bound_input/4

QUAT_repres_bound_input 20 21 21
⌈
log2(log1−1/(64 log2(p))

(2−64))
⌉

FINDUV_box_size 2 3 3 2 + ⌊(log2 p− f)/4⌋
norders 6 7 6 Experimental, see Section 9.3.2

(qt)

(
5, 17, 37

41, 53, 97

) (
5, 13, 17, 41

73, 89, 97

) (
5, 37, 61

97, 113, 149

)
See Section 3.2.1.1

QUAT_prime_cofactor 2252 + 65 2384 + 369 2506 + 51 Smallest prime larger that 2⌈log2(p)⌉
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Elliptic Curve Computations. The following table gives the constants used in elliptic curve computations.

Constant NIST Level Formula
I III V

TORSION_2POWER_BYTES 32 48 63 ⌊(f + 7)/8⌋

Encoding. The following table gives the constants used in encoding various objects.

Constant NIST Level Formula
I III V

HASH_ITERATIONS 64 256 512 232·⌈log2 p/64⌉−(f−ersp)

FP_ENCODED_BYTES 32 48 64 8 ⌊(log2(p) + 63)/64⌋
FP2_ENCODED_BYTES 64 96 128 2 · FP_ENCODED_BYTES
EC_CURVE_ENCODED_BYTES 64 96 128 2 · FP_ENCODED_BYTES
PUBLICKEY_BYTES 65 97 129 1 + EC_CURVE_ENCODED_BYTES
SECRETKEY_BYTES 353 529 701 PUBLICKEY_BYTES

+ 4 · FP_ENCODED_BYTES
+ 4 · TORSION_2POWER_BYTES

SIGNATURE_BYTES 148 224 292 4 + EC_CURVE_ENCODED_BYTES
+ 4 ⌊(ersp + 7)/8⌋+ λ/8


	Chapter 1. Introduction
	1.1. Advantages and limitations
	1.2. High level description of SQIsign
	1.3. Differences with the round-1 SQIsign submission
	1.4. Notation

	Chapter 2. Basics of Isogenies
	2.1. Finite fields
	2.2. Elliptic curves
	2.3. Isogenies between elliptic curves
	2.4. Isogenies between principally polarized abelian surfaces

	Chapter 3. Basics of Quaternions
	3.1. Quaternions and ideals
	3.2. Converting between ideals and isogenies

	Chapter 4. The Signature Scheme
	4.1.  protocols and the Fiat–Shamir Transform
	4.2. Parameters
	4.3. Key generation
	4.4. Signing
	4.5. Verification
	4.6. Binary format

	Chapter 5. Parameter sets
	5.1. Parameter requirements
	5.2. Parameter sets

	Chapter 6. Known answer test values
	Chapter 7. Performance analysis
	7.1. Key and signature sizes
	7.2. Reference implementation
	7.3. Optimized implementation
	7.4. Intel Broadwell optimized implementation
	7.5. ARM Cortex-M4 implementation
	7.6. Performance evaluation

	Chapter 8. Implementation details
	8.1. Finite field arithmetic
	8.2. Elliptic curve arithmetic
	8.3. Computing pairings
	8.4. Isogenies
	8.5. Theta coordinates

	Chapter 9. Heuristics and failure cases
	9.1. Heuristics on lattices and ideals
	9.2. Chains of (2,2)-isogenies
	9.3. Ideal-to-isogeny translation

	Chapter 10. Security analysis
	10.1. Security reductions
	10.2. Resistance to known attacks
	10.3. Nothing up my sleeve

	Bibliography
	Appendix A. Lemmas on lattice sampling
	Appendix B. Tables of constants

